Experimental characterization of a 4H-SiC high voltage current limiting device

被引:1
|
作者
Nallet, F
Planson, D
Godignon, P
Locatelli, ML
Lazar, M
Chante, JP
机构
[1] Inst Natl Sci Appl, Ctr Gen Elect Lyon CEGELY, UMR 5005, F-69621 Villeurbanne, France
[2] Univ Autonoma Barcelona, Ctr Nacl Microelect, E-08193 Barcelona, Spain
关键词
silicon carbide; MOSFET; current limiting device; channel mobility; serial protection;
D O I
10.1016/S0169-4332(01)00526-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The aim of this paper is to show the first experimental results of a 600 V 4H-SiC current limiting device. This device limits the current which flows through it as the bias voltage between its two contacts increases. The static curves obtained from the first process run (T = 300K) show a current limitation capability with a saturation voltage ranging from 10 to 15 V. The device electrical characterization shows a R-ON approximate to 150 m Omega cm(2) and a current density of 150 A cm(-2) under 50 V. The forward conduction is ensured by an N type implanted channel (doping species: nitrogen) on top of an P+ implanted layer (doping species: aluminum). The post-implantation annealing of 1700 degreesC/30 min leads to a good electrical activation (80%) of the N-channer/P+ layer (analyzed by C(V) and SIMS methods) and a good channel mobility (100 cm(2) V-1 s(-1) for a 2 x 10(17) cm(-3) N compensated doping concentration). The prototypes of the second process run reach a saturation current density of 900 A cm(-2) with a specific on-resistance of 13 m Omega cm(2). The 4H-SiC current limiting devices of the second run belong to the best set of Accu-MOSFETs devices reported in the literature. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:404 / 407
页数:4
相关论文
共 50 条
  • [41] Isothermal current-voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers
    Levinshtein, M. E.
    Ivanov, P. A.
    Zhang, Q. J.
    Palmour, J. W.
    SEMICONDUCTORS, 2016, 50 (05) : 656 - 661
  • [42] Optimized design of 4H-SiC UMOSFET for high breakdown voltage
    Zou, Xian
    Wu, Zhiming
    Wang, Weiping
    Yin, Defu
    Li, Guangrong
    Sun, Yongqiang
    Wu, Yaping
    Li, Xu
    Kang, Junyong
    AOPC 2020: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2020, 11567
  • [43] High-voltage lateral RESURF MOSFETs on 4H-SiC
    Chatty, K.
    Banerjee, S.
    Chow, T.P.
    Gutmann, R.J.
    Hoshi, M.
    Annual Device Research Conference Digest, 1999, : 44 - 45
  • [44] Turn-on process in high voltage 4H-SiC thyristors
    Dyakonova, NV
    Levinshtein, ME
    Palmour, JW
    Rumyantsev, SL
    Singh, R
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1998, 13 (02) : 241 - 243
  • [45] High-voltage (3 kV) UMOSFETs in 4H-SiC
    Li, Y
    Cooper, JA
    Capano, MA
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (06) : 972 - 975
  • [46] Turn-on process in high voltage 4H-SiC thyristors
    Dyakonova, NV
    Levinshtein, ME
    Palmour, JW
    Rumyantsev, SL
    Singh, R
    WIDE-BANDGAP SEMICONDUCTORS FOR HIGH POWER, HIGH FREQUENCY AND HIGH TEMPERATURE, 1998, 512 : 211 - 216
  • [47] Reliability Aspects of High Voltage 4H-SiC JBS Diodes
    Brosselard, Pierre
    Camara, Nicolas
    Jorda, Xavier
    Vellvehi, Miquel
    Bano, Edwige
    Millan, Jose
    Godignon, Philippe
    SILICON CARBIDE AND RELATED MATERIALS 2007, PTS 1 AND 2, 2009, 600-603 : 935 - +
  • [48] Material quality improvements for high voltage 4H-SiC diodes
    Kalinina, E
    Kossov, V
    Shchukarev, A
    Bratus, V
    Pensl, G
    Rendakova, S
    Dmitriev, V
    Hallen, A
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 80 (1-3): : 337 - 341
  • [49] High Voltage 4H-SiC Bi-Directional IGBTs
    Chowdhury, S.
    Hitchcock, C.
    Dahal, R.
    Bhat, I. B.
    Chow, T. P.
    2016 28TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES AND ICS (ISPSD), 2016, : 463 - 466
  • [50] Modeling the Hysteresis of Current-Voltage Characteristics in 4H-SiC Transistors
    Vasilev, Alexander
    Jech, Markus
    Grill, Alexander
    Rzepa, Gerhard
    Schleich, Christian
    Makarov, Alexander
    Pobegen, Gregor
    Grasser, Tibor
    Waltl, Michael
    Tyaginov, Stanislav
    2020 IEEE INTERNATIONAL INTEGRATED RELIABILITY WORKSHOP (IIRW), 2020, : 31 - 34