Automatic Breast Cancer Grading of Histopathological Images

被引:58
|
作者
Dalle, Jean-Romain [1 ]
Leow, Wee Kheng [1 ]
Racoceanu, Daniel [2 ]
Tutac, Adina Eunice [3 ]
Putti, Thomas C. [4 ]
机构
[1] Natl Univ Singapore, Dept Comp Sci, Comp 1, Singapore 117590, Singapore
[2] IPAL, CNRS, UMI 2955, Singapore 119613, Singapore
[3] Univ Politecn Timisoara, Dept Engn, Timisoara, Romania
[4] Natl Univ Singapore Hosp, Dept Pathol, Singapore 119074, Singapore
关键词
D O I
10.1109/IEMBS.2008.4649847
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Breast cancer grading of histopathological images is the standard clinical practice for the diagnosis and prognosis of breast cancer development. In a large hospital, a pathologist typically handles 100 grading cases per day, each consisting of about 2000 image frames. It is, therefore, a very tedious and time-consuming task. This paper proposes a method for automatic computer grading to assist pathologists by providing second opinions and reducing their workload. It combines the three criteria in the Nottingham scoring system using a multi-resolution approach. To our best knowledge, there is no existing work that provide complete grading according to the Nottingham criteria.
引用
收藏
页码:3052 / +
页数:3
相关论文
共 50 条
  • [21] Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images
    Li, Lingqiao
    Pan, Xipeng
    Yang, Huihua
    Liu, Zhenbing
    He, Yubei
    Li, Zhongming
    Fan, Yongxian
    Cao, Zhiwei
    Zhang, Longhao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) : 14509 - 14528
  • [22] Automatic Histological Grading of Breast Cancer Resection Tissue
    Lee, Geongyu
    Kim, Chung-Yeul
    Kwak, Tae-Yeong
    Kim, Sun Woo
    Chang, Hyeyoon
    MODERN PATHOLOGY, 2022, 35 (SUPPL 2) : 147 - 148
  • [23] Automatic Histological Grading of Breast Cancer Resection Tissue
    Lee, Geongyu
    Kim, Chung-Yeul
    Kwak, Tae-Yeong
    Kim, Sun Woo
    Chang, Hyeyoon
    LABORATORY INVESTIGATION, 2022, 102 (SUPPL 1) : 147 - 148
  • [24] Towards Automatic Classification of Breast Cancer Histopathological Image
    Elelimy, E.
    Mohamed, A. A.
    PROCEEDINGS OF 2018 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2018, : 299 - 306
  • [25] Classification and quantitative analysis of histopathological images of breast cancer
    Anuranjeeta
    Bhattacharjee, Romel
    Sharma, Shiru
    Shukla, K. K.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2021, 35 (03) : 263 - 293
  • [26] Feature Generalization for Breast Cancer Detection in Histopathological Images
    Rik Das
    Kanwalpreet Kaur
    Ekta Walia
    Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 566 - 581
  • [27] Feature Generalization for Breast Cancer Detection in Histopathological Images
    Das, Rik
    Kaur, Kanwalpreet
    Walia, Ekta
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (02) : 566 - 581
  • [28] Automated classification of breast cancer morphology in histopathological images
    Ville Ojansivu
    Nina Linder
    Esa Rahtu
    Matti Pietikäinen
    Mikael Lundin
    Heikki Joensuu
    Johan Lundin
    Diagnostic Pathology, 8 (Suppl 1)
  • [29] Adaptation of Deep Convolutional Neural Networks for Cancer Grading from Histopathological Images
    Postavaru, Stefan
    Stoean, Ruxandra
    Stoean, Catalin
    Joya Caparros, Gonzalo
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 38 - 49
  • [30] Computer analysis of histopathological images for tumor grading
    Klonowski, Wlodzimierz
    Korzynska, Anna
    Gomolka, Ryszard
    PHYSIOLOGICAL MEASUREMENT, 2018, 39 (03)