Phase Transition and Level-Set Percolation for the Gaussian Free Field

被引:66
|
作者
Rodriguez, Pierre-Francois [1 ]
Sznitman, Alain-Sol [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
STRONGLY CORRELATED SYSTEMS; RANDOM INTERLACEMENTS; VACANT SET;
D O I
10.1007/s00220-012-1649-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider level-set percolation for the Gaussian free field on , d a parts per thousand yen 3, and prove that, as h varies, there is a non-trivial percolation phase transition of the excursion set above level h for all dimensions d a parts per thousand yen 3. So far, it was known that the corresponding critical level h (*)(d) satisfies h (*)(d) a parts per thousand yen 0 for all d a parts per thousand yen 3 and that h (*)(3) is finite, see Bricmont et al. (J Stat Phys 48(5/6):1249-1268, 1987). We prove here that h (*)(d) is finite for all d a parts per thousand yen 3. In fact, we introduce a second critical parameter h (**) a parts per thousand yen h (*), show that h (**)(d) is finite for all d a parts per thousand yen 3, and that the connectivity function of the excursion set above level h has stretched exponential decay for all h > h (**). Finally, we prove that h (*) is strictly positive in high dimension. It remains open whether h (*) and h (**) actually coincide and whether h (*) > 0 for all d >= 3.
引用
收藏
页码:571 / 601
页数:31
相关论文
共 50 条
  • [31] A derivative-free level-set method for topology optimization
    Guirguis, David
    Aly, Mohamed F.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2016, 120 : 41 - 56
  • [32] Enhanced Level-Set Method for free surface flow applications
    Ferro, Paulin
    Landel, Paul
    Landrodie, Carla
    Guillot, Simon
    Pescheux, Marc
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2025, 185
  • [33] Modeling of multi-phase flows with a level-set method
    van der Pijl, SP
    Segal, A
    Vuik, C
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 698 - 707
  • [34] Level-set curve particles
    Jiang, Tingting
    Tomasi, Carlo
    COMPUTER VISION - ECCV 2006, PT 3, PROCEEDINGS, 2006, 3953 : 633 - 644
  • [35] A level-set approach for stereo
    Deriche, R
    Bouvin, C
    Faugeras, O
    INVESTIGATIVE IMAGE PROCESSING, 1997, 2942 : 150 - 161
  • [36] THE PHASE TRANSITION FOR PLANAR GAUSSIAN PERCOLATION MODELS WITHOUT FKG
    Muirhead, Stephen
    Rivera, Alejandro
    Vanneuville, Hugo
    Kohler-Schindler, Laurin
    ANNALS OF PROBABILITY, 2023, 51 (05): : 1785 - 1829
  • [37] On Decoupling Inequalities and Percolation of Excursion Sets of the Gaussian Free Field
    Serguei Popov
    Balázs Ráth
    Journal of Statistical Physics, 2015, 159 : 312 - 320
  • [38] On Decoupling Inequalities and Percolation of Excursion Sets of the Gaussian Free Field
    Popov, Serguei
    Rath, Balazs
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (02) : 312 - 320
  • [39] Comparison study of phase-field and level-set method for three-phase systems including two minerals
    Mathis Kelm
    Stephan Gärttner
    Carina Bringedal
    Bernd Flemisch
    Peter Knabner
    Nadja Ray
    Computational Geosciences, 2022, 26 : 545 - 570
  • [40] Comparison study of phase-field and level-set method for three-phase systems including two minerals
    Kelm, Mathis
    Gaerttner, Stephan
    Bringedal, Carina
    Flemisch, Bernd
    Knabner, Peter
    Ray, Nadja
    COMPUTATIONAL GEOSCIENCES, 2022, 26 (03) : 545 - 570