Let f be a Hecke modular form, and let chi be a primitive character of conductor q(l). Assume that q is an odd prime. In this paper we prove the subconvex bound L(1/2, Sym(2) f circle times chi) << f,q,epsilon,q(3l(1/4) (-) (1/36+epsilon)) for any epsilon > 0. This can be compared with the recently established t-aspect subconvexity of the symmetric square L-functions. (C) 2012 Elsevier Inc. All rights reserved.
机构:
Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Ganapathy, Radhika
Lomeli, Luis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oklahoma, Dept Math, Norman, OK 73019 USAUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
机构:
Shandong Univ, Sch Math, Jinan 250100, Peoples R China
Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, IsraelShandong Univ, Sch Math, Jinan 250100, Peoples R China
机构:
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China