Best approximation and fixed point theorems in hyperconvex metric spaces

被引:5
|
作者
Markin, Jack T.
机构
关键词
Hyperconvex space; Best approximation; Fixed point; Admissible set; Externally hyperconvex set;
D O I
10.1016/j.na.2005.02.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop best approximation and fixed point theorems in a hyperconvex metric space for multivalued mappings F that are nonexpansive or continuous in the Hausdorff metric. The best approximation results assume either admissible or externally hyperconvex sets as the domain X or value of the mapping. The fixed point results assume either admissible, sub-admissible or externally hyperconvex sets as the domain or value of the mapping and that F(center dot) boolean AND X not equal empty set. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E1841 / E1846
页数:6
相关论文
共 50 条
  • [41] A fixed point theorem in hyperconvex spaces
    D. Bugajewski
    E. Grzelaczyk
    Archiv der Mathematik, 2000, 75 : 395 - 400
  • [42] Fixed point and best proximity point theorems for contractions in new class of probabilistic metric spaces
    Yongfu Su
    Jingling Zhang
    Fixed Point Theory and Applications, 2014
  • [43] Fixed point and best proximity point theorems for contractions in new class of probabilistic metric spaces
    Su, Yongfu
    Zhang, Jingling
    FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [44] FIXED POINT THEOREMS IN QUASI-METRIC SPACES AND APPLICATIONS TO MULTIDIMENSIONAL FIXED POINT THEOREMS ON G-METRIC SPACES
    Agarwal, Ravi
    Karapinar, Erdal
    Roldan-Lopez-De-Hierro, Antonio-Francisco
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (09) : 1787 - 1816
  • [45] APPLICATION OF FIXED POINT THEOREM TO BEST SIMULTANEOUS APPROXIMATION IN CONVEX METRIC SPACES
    Nashine, Hemant Kumar
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2010, 33 : 107 - 118
  • [46] N fixed point theorems and N best proximity point theorems for generalized contraction in partially ordered metric spaces
    Jingling Zhang
    Ravi P. Agarwal
    Nan Jiang
    Journal of Fixed Point Theory and Applications, 2018, 20
  • [47] φ-BEST PROXIMITY POINT THEOREMS IN METRIC SPACES WITH APPLICATIONS IN PARTIAL METRIC SPACES
    Imdad, Mohammad
    Saleh, Hayel N.
    Alfaqih, Waleed M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (01): : 190 - 200
  • [48] N fixed point theorems and N best proximity point theorems for generalized contraction in partially ordered metric spaces
    Zhang, Jingling
    Agarwal, Ravi P.
    Jiang, Nan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [49] A fixed point theorem in hyperconvex spaces
    Bugajewski, D
    Grzelaczyk, E
    ARCHIV DER MATHEMATIK, 2000, 75 (05) : 395 - 400
  • [50] General Fixed Point Theorems on Metric Spaces and 2-metric Spaces
    Tran Van An
    Nguyen Van Dung
    Vo Thi Le Hang
    FILOMAT, 2014, 28 (10) : 2037 - 2045