Best approximation and fixed point theorems in hyperconvex metric spaces

被引:5
|
作者
Markin, Jack T.
机构
关键词
Hyperconvex space; Best approximation; Fixed point; Admissible set; Externally hyperconvex set;
D O I
10.1016/j.na.2005.02.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop best approximation and fixed point theorems in a hyperconvex metric space for multivalued mappings F that are nonexpansive or continuous in the Hausdorff metric. The best approximation results assume either admissible or externally hyperconvex sets as the domain X or value of the mapping. The fixed point results assume either admissible, sub-admissible or externally hyperconvex sets as the domain or value of the mapping and that F(center dot) boolean AND X not equal empty set. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E1841 / E1846
页数:6
相关论文
共 50 条