Computational Intelligence for Evolving Trading Rules

被引:32
|
作者
Ghandar, Adam [1 ]
Michalewicz, Zbigniew [1 ,2 ,3 ]
Schmidt, Martin [4 ]
To, Thuy-Duong [5 ]
Zurbrugg, Ralf [5 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
[2] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
[3] Polish Japanese Inst Informat Technol, PL-02008 Warsaw, Poland
[4] SolveIT Software Pty Ltd, Adelaide, SA 5000, Australia
[5] Univ Adelaide, Sch Commerce, Adelaide, SA 5005, Australia
关键词
Evolutionary computation; fuzzy systems; portfolio management; stock market; trading systems; STATISTICAL-INFERENCE; TECHNICAL ANALYSIS; NEURAL NETWORKS; PREDICTION; TIME;
D O I
10.1109/TEVC.2008.915992
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an adaptive computational intelligence system for learning trading rules. The trading rules are represented using a fuzzy logic rule base, and using an artificial evolutionary process the system learns to form rules that can perform well in dynamic market conditions. A comprehensive analysis of the results or applying the system for portfolio construction using portfolio evaluation tools widely accepted by both the financial industry and academia is provided.
引用
收藏
页码:71 / 86
页数:16
相关论文
共 50 条
  • [21] TRADING RULES AND EXCESS VOLATILITY
    BULKLEY, G
    TONKS, I
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1992, 27 (03) : 365 - 382
  • [22] PORTFOLIO INSURANCE TRADING RULES
    BOOKSTABER, R
    LANGSAM, JA
    JOURNAL OF FUTURES MARKETS, 1988, 8 (01) : 15 - 31
  • [23] THE EVOLVING CONTROVERSY OVER INSIDER TRADING
    BAGBY, JW
    AMERICAN BUSINESS LAW JOURNAL, 1987, 24 (04) : 571 - 620
  • [24] Scalability of evolving networks of trading agents
    Wang, Juan
    De Wilde, Philippe
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2007, 1 (04): : 197 - 204
  • [25] Evolving to Generalize: Trading Precision for Speed
    O'Connor, Cailin
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2017, 68 (02): : 389 - 410
  • [26] Computational Intelligence-Based Search of Entertaining Rules in the Space ofPredator/Prey Games
    Halim, Zahid
    Baig, Abdul Rauf
    Abbas, Ghulam
    Islam, Muhammad Arshad
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2017, 28 (06) : 643 - 663
  • [27] Discovery of trading points based on Bayesian modeling of trading rules
    Huang, Qinghua
    Kong, Zhoufan
    Li, Yanshan
    Yang, Jie
    Li, Xuelong
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2018, 21 (06): : 1473 - 1490
  • [28] Discovery of trading points based on Bayesian modeling of trading rules
    Qinghua Huang
    Zhoufan Kong
    Yanshan Li
    Jie Yang
    Xuelong Li
    World Wide Web, 2018, 21 : 1473 - 1490
  • [29] Entity Resolution with Evolving Rules
    Whang, Steven Euijong
    Garcia-Molina, Hector
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2010, 3 (01): : 1326 - 1337
  • [30] Learning Opposites with Evolving Rules
    Tizhoosh, H. R.
    Rahnamayan, S.
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,