Computational Intelligence for Evolving Trading Rules

被引:32
|
作者
Ghandar, Adam [1 ]
Michalewicz, Zbigniew [1 ,2 ,3 ]
Schmidt, Martin [4 ]
To, Thuy-Duong [5 ]
Zurbrugg, Ralf [5 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
[2] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
[3] Polish Japanese Inst Informat Technol, PL-02008 Warsaw, Poland
[4] SolveIT Software Pty Ltd, Adelaide, SA 5000, Australia
[5] Univ Adelaide, Sch Commerce, Adelaide, SA 5005, Australia
关键词
Evolutionary computation; fuzzy systems; portfolio management; stock market; trading systems; STATISTICAL-INFERENCE; TECHNICAL ANALYSIS; NEURAL NETWORKS; PREDICTION; TIME;
D O I
10.1109/TEVC.2008.915992
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an adaptive computational intelligence system for learning trading rules. The trading rules are represented using a fuzzy logic rule base, and using an artificial evolutionary process the system learns to form rules that can perform well in dynamic market conditions. A comprehensive analysis of the results or applying the system for portfolio construction using portfolio evaluation tools widely accepted by both the financial industry and academia is provided.
引用
收藏
页码:71 / 86
页数:16
相关论文
共 50 条
  • [1] Evolving Profitable Trading Rules with Genetic Algorithms
    Shin, Kyung-shik
    Kim, Kyoung-jae
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (08): : 3313 - 3321
  • [2] Evolving market index trading rules using Grammatical evolution
    O'Neill, M
    Brabazon, A
    Ryan, C
    Collins, JJ
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2001, 2037 : 343 - 352
  • [3] Evolving Decision Strategies for Computational Intelligence Agents
    Neruda, Roman
    Slapak, Martin
    INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2012, 2012, 7390 : 213 - 220
  • [4] Evolving Computational Intelligence System for Malware Detection
    Demertzis, Konstantinos
    Iliadis, Lazaros
    ADVANCED INFORMATION SYSTEMS ENGINEERING WORKSHOPS, 2014, 178 : 322 - 334
  • [5] Computational intelligence in software defects rules discovery
    Andreea Vescan
    Camelia Şerban
    Gloria Cerasela Crişan
    Soft Computing, 2022, 26 : 6925 - 6939
  • [6] Computational intelligence in software defects rules discovery
    Vescan, Andreea
    Serban, Camelia
    Crisan, Gloria Cerasela
    SOFT COMPUTING, 2022, 26 (14) : 6925 - 6939
  • [7] Systematically evolving configuration parameters for computational intelligence methods
    Proctor, JM
    Weber, R
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2005, 3776 : 376 - 381
  • [8] Computational intelligence algorithms for risk-adjusted trading strategies
    Pavlidis, N. G.
    Pavlidis, E. G.
    Epitropakis, M. G.
    Plagianakos, V. P.
    Vrahatis, M. N.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 540 - +
  • [9] A computational intelligence portfolio construction system for equity market trading
    Ghandar, Adam
    Michalewicz, Zbigniew
    Schmidt, Martin
    To, Thuy-Duong
    Zurbruegg, Ralf
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 798 - +
  • [10] Parallel method of production rules extraction based on computational intelligence
    Oliinyk A.
    Skrupsky S.
    Subbotin S.
    Korobiichuk I.
    Automatic Control and Computer Sciences, 2017, 51 (4) : 215 - 223