A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices

被引:39
|
作者
Aggarwal, Divya [1 ]
Chandrasekaran, Shabana [2 ]
Annamalai, Balamurugan [3 ]
机构
[1] XLRI Xavier Sch Management, Jamshedpur 831001, Jharkhand, India
[2] Xavier Univ, Xavier Inst Management, Bhubaneswar 751013, Odisha, India
[3] Indian Inst Management Sambalpur, Sambalpur 768019, Odisha, India
关键词
Bitcoin; Complete empirical ensemble mode with adaptive noise decomposition (CEEMDAN); Cryptocurrency; Support vector machine; Empirical mode decomposition (EMD); Ensemble empirical mode decomposition (EEMD); VOLATILITY; STOCK; CRYPTOCURRENCIES; INEFFICIENCY; MARKETS; GOLD; CURRENCIES; DEPENDENCE; SPECTRUM;
D O I
10.1016/j.jbef.2020.100335
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Bitcoin as an asset class has received phenomenal investor attention and is considered to have similar characteristics like gold. This study aims to analyze the price behavior of bitcoin and apply machine learning algorithm for its prediction. Understanding the nature of Bitcoin price series is a multi-scale problem, and it can be best examined by analyzing its compositional characteristics. This study uses complete empirical ensemble mode decomposition (CEEMD) to analyze the nature of Bitcoin price series. Daily Bitcoin prices from 2012 to 2018 are used to perform CEEMD to identify the short term, medium term, and long-term trend in the Bitcoin price series. The study uses support vector machine (SVM) learning algorithm to find whether it can predict Bitcoin prices and finds that SVM predicts five steps ahead Bitcoin prices for the short term, medium term, long term, and overall Bitcoin price level. (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Support Vector Machine-Based Endmember Extraction
    Filippi, Anthony M.
    Archibald, Rick
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03): : 771 - 791
  • [32] Support Vector Machine-Based Focused Crawler
    Baweja, Vanshita R.
    Bhatia, Rajesh
    Kumar, Manish
    INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES, ICICCT 2019, 2020, 89 : 673 - 686
  • [33] EEG Signal Classification Using Empirical Mode Decomposition and Support Vector Machine
    Bajaj, Varun
    Pachori, Ram Bilas
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 2, 2012, 131 : 623 - 635
  • [34] Remaining Useful Life Estimation by Empirical Mode Decomposition and Support Vector Machine
    Maior, C. B. S.
    Moura, M. C.
    Lins, I. D.
    Lopez Droguett, E.
    Diniz, H. H.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (11) : 4603 - 4610
  • [35] Analysis of EEG Signals using Empirical Mode Decomposition and Support Vector Machine
    Das, Kaushik
    Mudoi, Rajkishur
    2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 358 - 362
  • [36] Ensemble Empirical Mode Decomposition for Machine Health Diagnosis
    Zhang, Jian
    Yan, Ruqiang
    Gao, Robert X.
    DAMAGE ASSESSMENT OF STRUCTURES VIII, 2009, 413-414 : 167 - 174
  • [37] A novel bevel gear fault diagnosis method based on ensemble empirical mode decomposition and support vector machines
    Sun Yanqiang
    Chen Hongfang
    Shi Zhaoyao
    Tang Liang
    INSIGHT, 2020, 62 (01) : 34 - 41
  • [38] A New Hybrid Approach for Short-Term Electric Load Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Whale Optimization
    Liu, Tongxiang
    Jin, Yu
    Gao, Yuyang
    ENERGIES, 2019, 12 (08)
  • [39] Empirical analysis of support vector machine ensemble classifiers
    Wang, Shi-jin
    Mathew, Avin
    Chen, Yan
    Xi, Li-feng
    Ma, Lin
    Lee, Jay
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 6466 - 6476
  • [40] Spacecraft Leakage Detection Using Acoustic Emissions Based on Empirical Mode Decomposition and Support Vector Machine
    Ding, Hongbing
    Liang, Zhenxin
    Qi, Lei
    Sun, Hongjun
    Liu, Xixi
    2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,