A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices

被引:39
|
作者
Aggarwal, Divya [1 ]
Chandrasekaran, Shabana [2 ]
Annamalai, Balamurugan [3 ]
机构
[1] XLRI Xavier Sch Management, Jamshedpur 831001, Jharkhand, India
[2] Xavier Univ, Xavier Inst Management, Bhubaneswar 751013, Odisha, India
[3] Indian Inst Management Sambalpur, Sambalpur 768019, Odisha, India
关键词
Bitcoin; Complete empirical ensemble mode with adaptive noise decomposition (CEEMDAN); Cryptocurrency; Support vector machine; Empirical mode decomposition (EMD); Ensemble empirical mode decomposition (EEMD); VOLATILITY; STOCK; CRYPTOCURRENCIES; INEFFICIENCY; MARKETS; GOLD; CURRENCIES; DEPENDENCE; SPECTRUM;
D O I
10.1016/j.jbef.2020.100335
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Bitcoin as an asset class has received phenomenal investor attention and is considered to have similar characteristics like gold. This study aims to analyze the price behavior of bitcoin and apply machine learning algorithm for its prediction. Understanding the nature of Bitcoin price series is a multi-scale problem, and it can be best examined by analyzing its compositional characteristics. This study uses complete empirical ensemble mode decomposition (CEEMD) to analyze the nature of Bitcoin price series. Daily Bitcoin prices from 2012 to 2018 are used to perform CEEMD to identify the short term, medium term, and long-term trend in the Bitcoin price series. The study uses support vector machine (SVM) learning algorithm to find whether it can predict Bitcoin prices and finds that SVM predicts five steps ahead Bitcoin prices for the short term, medium term, long term, and overall Bitcoin price level. (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Gear fault diagnosis method based on ensemble empirical mode decomposition energy entropy and support vector machine
    Zhang, Chao
    Chen, Jian-Jun
    Guo, Xun
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2012, 43 (03): : 932 - 939
  • [2] Hybrid Intelligent Damage Identification of Composite Plate Based on Ensemble Empirical Mode Decomposition and Support Vector Machine
    Qiang Chen
    Xuefeng Chen
    Xiaojun Zhu
    Zhi Zhai
    Shaohua Tian
    Zhengjia He
    纤维复合材料, 2013, 30 (04) : 3 - 7
  • [3] Sensor Fault Diagnosis Based on Ensemble Empirical Mode Decomposition and Optimized Least Squares Support Vector Machine
    Ding, Guojun
    Wang, Lide
    Shen, Ping
    Yang, Peng
    JOURNAL OF COMPUTERS, 2013, 8 (11) : 2916 - 2924
  • [4] Fault diagnosis method based on empirical mode decomposition and support vector machine
    College of Automation, Chongqing University, Chongqing 400030, China
    不详
    Kongzhi yu Juece Control Decis, 2009, 6 (889-893):
  • [5] A support vector machine-based ensemble algorithm for breast cancer diagnosis
    Wang, Haifeng
    Zheng, Bichen
    Yoon, Sang Won
    Ko, Hoo Sang
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 267 (02) : 687 - 699
  • [6] Classification of Epileptic Seizures using Ensemble Empirical Mode Decomposition and Least Squares Support Vector Machine
    Torse, Dattaprasad A.
    Khanai, Rajashri
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [7] Displacement prediction model of landslide based on ensemble empirical mode decomposition and support vector regression
    Wang, Chenhui
    Zhao, Yijiu
    Guo, Wei
    Meng, Qingjia
    Li, Bin
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (10): : 2196 - 2204
  • [8] An Intelligent Fault Diagnosis Method based on Empirical Mode Decomposition and Support Vector Machine
    Shen Zhi-xi
    Huang Xi-yue
    Ma Xiao-xiao
    THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 865 - 869
  • [9] Rolling bearing fault diagnosis based on empirical mode decomposition and support vector machine
    Xu K.
    Chen Z.-H.
    Zhang C.-B.
    Dong G.-Z.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2019, 36 (06): : 915 - 922
  • [10] Fault diagnosis of diesel engine based on empirical mode decomposition and support vector machine
    Shen, Zhixi
    Huang, Xiyue
    Ma, Xiaoxiao
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2010, 30 (01): : 19 - 22