NONPARAMETRIC INFERENCE FOR RIGHT-CENSORED DATA USING SMOOTHING SPLINES

被引:0
|
作者
Hao, Meiling [1 ]
Lin, Yuanyuan [2 ]
Zhao, Xingqiu [3 ]
机构
[1] Univ Int Business & Econ, Sch Stat, Beijing, Peoples R China
[2] Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Functional Bahadur representation; likelihood ratio test; nonparametric inference; penalized likelihood; right-censored data; smoothing splines; PRODUCT-LIMIT ESTIMATOR; HAZARD RATE ESTIMATION; COX REGRESSION-MODEL; LINEAR RANK-TESTS; SEMIPARAMETRIC ANALYSIS; TRANSFORMATION MODELS; EFFICIENT ESTIMATION; LARGE-SAMPLE; SURVIVAL; LIKELIHOOD;
D O I
10.5705/ss.202017.0357
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study introduces a penalized nonparametric maximum likelihood estimation of the log-hazard function for analyzing right-censored data. Smoothing splines are employed for a smooth estimation. Our main discovery is a functional Bahadur representation, which serves as a key tool for nonparametric inferences of an unknown function. The asymptotic properties of the resulting smoothing-spline estimator of the unknown log-hazard function are established under regularity conditions. Moreover, we provide a local confidence interval for this function, as well as local and global likelihood ratio tests. We also discuss the asymptotic efficiency of the estimator. The theoretical results are validated using extensive simulation studies. Lastly, we demonstrate the estimator by applying it to a real data set.
引用
收藏
页码:153 / 173
页数:21
相关论文
共 50 条
  • [41] Optimal global rate of convergence in nonparametric regression with left-truncated and right-censored data
    Park, JH
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 89 (01) : 70 - 86
  • [42] Computational Treatment of the Error Distribution in Nonparametric Regression with Right-Censored and Selection-Biased Data
    Laurent, Geraldine
    Heuchenne, Cedric
    COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 509 - 516
  • [43] Inference for the trivariate Marshall-Olkin-Weibull distribution in presence of right-censored data
    de Oliveira, Ricardo Puziol
    de Oliveira Peres, Marcos Vinicius
    Achcar, Jorge Alberto
    Davarzani, Nasser
    CHILEAN JOURNAL OF STATISTICS, 2020, 11 (02): : 95 - 116
  • [44] RANK ANALYSIS OF COVARIANCE WITH RIGHT-CENSORED DATA
    WOOLSON, RF
    LACHENBRUCH, PA
    BIOMETRICS, 1983, 39 (03) : 727 - 733
  • [45] Nonparametric and semiparametric estimation of quantile residual lifetime for length-biased and right-censored data
    Wang, Yixin
    Zhou, Zhefang
    Zhou, Xiao-Hua
    Zhou, Yong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (02): : 220 - 250
  • [46] Nonparametric regression of state occupation, entry, exit, and waiting timeswith multistate right-censored data
    Mostajabi, Farida
    Datta, Somnath
    STATISTICS IN MEDICINE, 2013, 32 (17) : 3006 - 3019
  • [47] Piecewise Cox models with right-censored data
    Wong, George Y. C.
    Osborne, Michael P.
    Diao, Qinggang
    Yu, Qiqing
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 7894 - 7908
  • [48] Ordered tests for right-censored survival data
    Chi, Y
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2002, 44 (03) : 367 - 380
  • [49] Estimating the point availability with right-censored data
    Li, LX
    NAVAL RESEARCH LOGISTICS, 1999, 46 (01) : 119 - 127
  • [50] Umbrella tests for right-censored survival data
    Chen, YI
    Wolfe, DA
    STATISTICA SINICA, 2000, 10 (02) : 595 - 612