The brain's calendar: neural mechanisms of seasonal timing

被引:39
|
作者
Hofman, MA [1 ]
机构
[1] Netherlands Inst Brain Res, NL-1105 AZ Amsterdam, Netherlands
关键词
suprachiasmatic nucleus; pineal gland; biological clock; circadian rhythm; seasonal rhythm; clock genes; photoperiod; melatonin;
D O I
10.1017/S1464793103006250
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal component of the mammalian biological clock, the neural timing system that generates and coordinates a broad spectrum of physiological, endocrine and behavioural circadian rhythms. The pacemaker of the SCN oscillates with a near 24 h period and is entrained to the diurnal light dark cycle. Consistent with its role in circadian timing, investigations in rodents and non-human primates furthermore suggest that the SCN is the locus of the brain's endogenous calendar, enabling organisms to anticipate seasonal environmental changes. The present review focuses on the neuronal organization and dynamic properties of the biological clock and the means by which it is synchronized with the environmental lighting conditions. It is shown that the functional activity of the biological clock is entrained to the seasonal photic cycle and that photoperiod (day length) may act as an effective zeitgeber. Furthermore, new insights are presented, based on electrophysiological and molecular studies, that the mammalian circadian timing system consists of coupled oscillators and that the clock genes of these oscillators may also function as calendar genes. In summary, there are now strong indications that the neuronal changes and adaptations in mammals that occur in response to a seasonally changing environment are driven by an endogenous circadian clock located in the SCN, and that this neural calendar is reset by the seasonal fluctuations in photoperiod.
引用
收藏
页码:61 / 77
页数:17
相关论文
共 50 条
  • [31] Mechanisms and timing of brain injury among persons with cerebral palsy
    O'Shea, T. Michael
    DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2024, 66 (07): : 829 - 830
  • [32] Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease
    Chang, Jing-Yu
    Shi, Li-Hong
    Luo, Fei
    Zhang, Wang-Ming
    Woodward, Donald J.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2008, 32 (03): : 352 - 366
  • [33] Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease
    Chang, Jing-Yu
    Shi, Li-Hong
    Luo, Fel
    Zhang, Wang-Ming
    Woodward, Donald J.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2007, 31 (05): : 643 - 657
  • [34] Mechanisms of neural plasticity following brain injury
    Wieloch, Tadeusz
    Nikolich, Karoly
    CURRENT OPINION IN NEUROBIOLOGY, 2006, 16 (03) : 258 - 264
  • [35] MECHANISMS OF NEURAL REGENERATION . PROGRESS IN BRAIN RESEARCH
    KOENIG, H
    JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1965, 193 (12): : 1066 - &
  • [36] NEURAL MECHANISMS OF INFORMATION PROCESSING IN THE BRAIN.
    Amari, Shun-ichi
    Systems and Computers in Japan, 1987, 18 (07): : 31 - 45
  • [37] NEURAL MECHANISMS OF ATTENTION CONTROL IN THE PRIMATE BRAIN
    Kastner, Sabine
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2013, : 21 - 21
  • [38] Mechanisms and use of neural transplants for brain repair
    Dunnett, Stephen B.
    Bjorklund, Anders
    FUNCTIONAL NEURAL TRANSPLANTATION IV: TRANSLATION TO CLINICAL APPLICATION, PT A, 2017, 230 : 1 - 51
  • [39] Timing of seasonal sales
    Courty, P
    Li, H
    JOURNAL OF BUSINESS, 1999, 72 (04): : 545 - 572
  • [40] Timing tracheotomy - Calendar watching or individualization of care?
    Heffner, JE
    CHEST, 1998, 114 (02) : 361 - 363