COVID-19 diagnosis from chest CT scan images using deep learning

被引:0
|
作者
Alassiri, Raghad [1 ]
Abukhodair, Felwa [2 ]
Kalkatawi, Manal [2 ]
Khashoggi, Khalid [3 ]
Alotaibi, Reem [2 ]
机构
[1] King Abdulaziz & His Compan Fdn Giftedness & Creat, Riyadh, Saudi Arabia
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Med, Jeddah, Saudi Arabia
关键词
COVID-19; deep learning models; CT scan; data augmentation; transfer learning;
D O I
10.33436/v32i3y202205
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Coronavirus disease 2019 (COVID-19) has caused nearly 600 million individual infections worldwide and more than 6 million deaths were reported. With recent advancements in deep learning techniques, there have been significant efforts to detect and diagnose COVID-19 from computerized tomography (CT) scan medical images using deep learning. A retrospective study to detect COVID-19 using deep learning algorithms is conducted in this paper. It aims to improve training results of pre-trained models using transfer learning and data augmentation The performance of different models was measured and the difference in performance with and without using data augmentation was computed. Also, a Convolutional Neural Network (CNN) model was proposed and data augmentation was used to achieve high accuracy ratios. Finally, designed a website that uses the trained models where doctors can upload CT scan images and get COVID-19 classification (https://covid-e46e8.web.app/) was designed. The highest results from pre-trained models without using data augmentation were for DenseNet121, which was equal to 81.4%, and the highest accuracy after using the data augmentation was for MobileNet, which was equal to 83.4%. The rate of accuracy improvement percentage after using data augmentation was about 3%. The conclusion was that data augmentation could improve the accuracy of COVID-19 detection models as it increases the number of samples used to train these models.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 50 条
  • [41] Challenges of deep learning diagnosis for COVID-19 from chest imaging
    Alaufi, Rawan
    Kalkatawi, Manal
    Abukhodair, Felwa
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 14337 - 14361
  • [42] Challenges of deep learning diagnosis for COVID-19 from chest imaging
    Rawan Alaufi
    Manal Kalkatawi
    Felwa Abukhodair
    Multimedia Tools and Applications, 2024, 83 : 14337 - 14361
  • [43] Role of standard and soft tissue chest radiography images in COVID-19 diagnosis using deep learning
    Hu, Qiyuan
    Drukker, Karen
    Giger, Maryellen L.
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [44] Covid-19 Diagnosis Using a Deep Learning Ensemble Model with Chest X-Ray Images
    Türk F.
    Computer Systems Science and Engineering, 2023, 45 (02): : 1357 - 1373
  • [45] Comparison of deep learning architectures for COVID-19 diagnosis using chest X-ray images
    Sampen, Denilson
    Lavarello, Roberto
    MEDICAL IMAGING 2022: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2022, 12035
  • [46] Deep-learning characterization and quantification of COVID-19 pneumonia lesions from chest CT images
    Bermejo-Pelaez, D.
    Estepar, R. San Jose
    Fernandez-Velilla, M.
    Miras, C. Palacios
    Madueno, G. Gallardo
    Benegas, M.
    Oroz, M. A. Luengo
    Sellares, J.
    Sanchez, M.
    Peces Barba, G.
    Seijo, L. M.
    Ledesma-Carbayo, M. J.
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [47] Ensemble deep honey architecture for COVID-19 prediction using CT scan and chest X-ray images
    Reddy, B. Bhaskar
    Sudhakar, M. Venkata
    Reddy, P. Rahul
    Reddy, P. Raghava
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 2009 - 2035
  • [48] Ensemble deep honey architecture for COVID-19 prediction using CT scan and chest X-ray images
    B. Bhaskar Reddy
    M. Venkata Sudhakar
    P. Rahul Reddy
    P. Raghava Reddy
    Multimedia Systems, 2023, 29 : 2009 - 2035
  • [49] Momentum contrastive learning for few-shot COVID-19 diagnosis from chest CT images
    Chen, Xiaocong
    Yao, Lina
    Zhou, Tao
    Dong, Jinming
    Zhang, Yu
    PATTERN RECOGNITION, 2021, 113
  • [50] A deep fuzzy model for diagnosis of COVID-19 from CT images
    Song, Liping
    Liu, Xinyu
    Chen, Shuqi
    Liu, Shuai
    Liu, Xiangbin
    Muhammad, Khan
    Bhattacharyya, Siddhartha
    Applied Soft Computing, 2022, 122