COVID-19 diagnosis from chest CT scan images using deep learning

被引:0
|
作者
Alassiri, Raghad [1 ]
Abukhodair, Felwa [2 ]
Kalkatawi, Manal [2 ]
Khashoggi, Khalid [3 ]
Alotaibi, Reem [2 ]
机构
[1] King Abdulaziz & His Compan Fdn Giftedness & Creat, Riyadh, Saudi Arabia
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Med, Jeddah, Saudi Arabia
关键词
COVID-19; deep learning models; CT scan; data augmentation; transfer learning;
D O I
10.33436/v32i3y202205
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Coronavirus disease 2019 (COVID-19) has caused nearly 600 million individual infections worldwide and more than 6 million deaths were reported. With recent advancements in deep learning techniques, there have been significant efforts to detect and diagnose COVID-19 from computerized tomography (CT) scan medical images using deep learning. A retrospective study to detect COVID-19 using deep learning algorithms is conducted in this paper. It aims to improve training results of pre-trained models using transfer learning and data augmentation The performance of different models was measured and the difference in performance with and without using data augmentation was computed. Also, a Convolutional Neural Network (CNN) model was proposed and data augmentation was used to achieve high accuracy ratios. Finally, designed a website that uses the trained models where doctors can upload CT scan images and get COVID-19 classification (https://covid-e46e8.web.app/) was designed. The highest results from pre-trained models without using data augmentation were for DenseNet121, which was equal to 81.4%, and the highest accuracy after using the data augmentation was for MobileNet, which was equal to 83.4%. The rate of accuracy improvement percentage after using data augmentation was about 3%. The conclusion was that data augmentation could improve the accuracy of COVID-19 detection models as it increases the number of samples used to train these models.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 50 条
  • [1] Diagnosis of COVID-19 using CT scan images and deep learning techniques
    Shah, Vruddhi
    Keniya, Rinkal
    Shridharani, Akanksha
    Punjabi, Manav
    Shah, Jainam
    Mehendale, Ninad
    EMERGENCY RADIOLOGY, 2021, 28 (03) : 497 - 505
  • [2] Diagnosis of COVID-19 using CT scan images and deep learning techniques
    Vruddhi Shah
    Rinkal Keniya
    Akanksha Shridharani
    Manav Punjabi
    Jainam Shah
    Ninad Mehendale
    Emergency Radiology, 2021, 28 : 497 - 505
  • [3] An Efficient Deep Learning Approach for Detection of COVID-19 from Chest CT Scan Images
    Patil, Pravin Bhimbhai
    Patil, Nitin Jagannath
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 661 - 670
  • [4] DETECTING COVID-19 AND COMMUNITY ACQUIRED PNEUMONIA USING CHEST CT SCAN IMAGES WITH DEEP LEARNING
    Chaudhary, Shubham
    Sadbhawna
    Jakhetiya, Vinit
    Subudhi, Badri N.
    Baid, Ujjwal
    Guntuku, Sharath Chandra
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 8583 - 8587
  • [5] Deep Learning for COVID-19 Diagnosis from CT Images
    Loddo, Andrea
    Pili, Fabio
    Di Ruberto, Cecilia
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [6] Detection of Covid-19 from Chest CT Images Using Deep Transfer Learning
    Irsyad, Akhmad
    Tjandrasa, Handayani
    PROCEEDINGS OF 2021 13TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEM (ICTS), 2021, : 167 - 172
  • [7] Artificial Intelligence and COVID-19 Using Chest CT Scan and Chest X-ray Images: Machine Learning and Deep Learning Approaches for Diagnosis and Treatment
    Fusco, Roberta
    Grassi, Roberta
    Granata, Vincenza
    Setola, Sergio Venanzio
    Grassi, Francesca
    Cozzi, Diletta
    Pecori, Biagio
    Izzo, Francesco
    Petrillo, Antonella
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (10):
  • [8] Automatic detection of COVID-19 from chest CT scan and chest X-Rays images using deep learning, transfer learning and stacking
    Jangam, Ebenezer
    Barreto, Aaron Antonio Dias
    Annavarapu, Chandra Sekhara Rao
    APPLIED INTELLIGENCE, 2022, 52 (02) : 2243 - 2259
  • [9] Automatic detection of COVID-19 from chest CT scan and chest X-Rays images using deep learning, transfer learning and stacking
    Ebenezer Jangam
    Aaron Antonio Dias Barreto
    Chandra Sekhara Rao Annavarapu
    Applied Intelligence, 2022, 52 : 2243 - 2259
  • [10] Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform
    Vipul Kumar Singh
    Maheshkumar H. Kolekar
    Multimedia Tools and Applications, 2022, 81 : 3 - 30