Tunnel field-effect transistors with graphene channels

被引:27
|
作者
Svintsov, D. A. [1 ]
Vyurkov, V. V. [1 ]
Lukichev, V. F. [1 ]
Orlikovsky, A. A. [1 ]
Burenkov, A. [2 ]
Oechsner, R. [2 ]
机构
[1] Russian Acad Sci, Inst Phys & Technol, Moscow 117218, Russia
[2] Fraunhofer Inst Integrated Syst & Device Technol, D-91058 Erlangen, Germany
关键词
EFFECTIVE-MASS;
D O I
10.1134/S1063782613020218
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The lack of an OFF-state has been the main obstacle to the application of graphene-based transistors in digital circuits. Recently vertical graphene tunnel field-effect transistors with a low OFF-state current have been reported; however, they exhibited a relatively weak effect of gate voltage on channel conductivity. We propose a novel lateral tunnel graphene transistor with the channel conductivity effectively controlled by the gate voltage and the subthreshold slope approaching the thermionic limit. The proposed transistor has a semiconductor (dielectric) tunnel gap in the channel operated by gate and exhibits both high ON-state current inherent to graphene channels and low OFF-state current inherent to semiconductor channels.
引用
收藏
页码:279 / 284
页数:6
相关论文
共 50 条
  • [31] Asymmetric Tunnel Field-Effect Transistors as Frequency Multipliers
    Madan, Himanshu
    Saripalli, Vinay
    Liu, Huichu
    Datta, Suman
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (11) : 1547 - 1549
  • [32] Uniform Strain in Heterostructure Tunnel Field-Effect Transistors
    Verreck, Devin
    Verhulst, Anne S.
    Van de Put, Maarten L.
    Soree, Bart
    Collaert, Nadine
    Mocuta, Anda
    Thean, Aaron
    Groeseneken, Guido
    IEEE ELECTRON DEVICE LETTERS, 2016, 37 (03) : 337 - 340
  • [33] Impact of graphene polycrystallinity on the performance of graphene field-effect transistors
    Jimenez, David
    Cummings, Aron W.
    Chaves, Ferney
    Dinh Van Tuan
    Kotakoski, Jani
    Roche, Stephan
    APPLIED PHYSICS LETTERS, 2014, 104 (04)
  • [34] Impact of electrostatic doping level on the dissipative transport in graphene nanoribbons tunnel field-effect transistors
    Zhang, Weixiang
    Ragab, Tarek
    Zhang, Ji
    Basaran, Cemal
    CARBON, 2019, 153 : 120 - 126
  • [35] Performance Enhancement of Tunnel Field-Effect Transistors by Synthetic Electric Field Effect
    Morita, Yukinori
    Mori, Takahiro
    Migita, Shinji
    Mizubayashi, Wataru
    Tanabe, Akihito
    Fukuda, Koichi
    Matsukawa, Takashi
    Endo, Kazuhiko
    O'uchi, Shinichi
    Liu, Yong Xun
    Masahara, Meishoku
    Ota, Hiroyuki
    IEEE ELECTRON DEVICE LETTERS, 2014, 35 (07) : 792 - 794
  • [36] Demonstration of Complementary Ternary Graphene Field-Effect Transistors
    Kim, Yun Ji
    Kim, So-Young
    Noh, Jinwoo
    Shim, Chang Hoo
    Jung, Ukjin
    Lee, Sang Kyung
    Chang, Kyoung Eun
    Cho, Chunhum
    Lee, Byoung Hun
    SCIENTIFIC REPORTS, 2016, 6
  • [37] Valley-based field-effect transistors in graphene
    Lee, M. -K.
    Lue, N. -Y.
    Wen, C. -K.
    Wu, G. Y.
    PHYSICAL REVIEW B, 2012, 86 (16)
  • [38] Graphene-Graphite Oxide Field-Effect Transistors
    Standley, Brian
    Mendez, Anthony
    Schmidgall, Emma
    Bockrath, Marc
    NANO LETTERS, 2012, 12 (03) : 1165 - 1169
  • [39] Epitaxial graphene field-effect transistors on silicon substrates
    Kang, Hyun-Chul
    Karasawa, Hiromi
    Miyamoto, Yu
    Handa, Hiroyuki
    Suemitsu, Tetsuya
    Suemitsu, Maki
    Otsuji, Taiichi
    SOLID-STATE ELECTRONICS, 2010, 54 (09) : 1010 - 1014
  • [40] Deoxyribonucleic Acid Sensitive Graphene Field-Effect Transistors
    Hwang, Jongseung
    Kim, Heetae
    Lee, Jaehyun
    Whang, Dongmok
    Hwang, Sungwoo
    IEICE TRANSACTIONS ON ELECTRONICS, 2011, E94C (05): : 826 - 829