Modelling of photo- and electroluminescence of hydrogenated microcrystalline silicon solar cells

被引:10
|
作者
Mueller, Thomas C. M. [1 ]
Pieters, Bart E. [1 ]
Kirchartz, Thomas
Carius, Reinhard [1 ]
Rau, Uwe [1 ]
机构
[1] Foschungszentrum Julich, Photovolta IEK5, D-52525 Julich, Germany
来源
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 10-11 | 2012年 / 9卷 / 10-11期
关键词
photoluminescence; electroluminescence; simulation; hydrogenation; microcrystalline Si; solar cells; band tail slope; DRIFT-MOBILITY MEASUREMENTS; PHOTOLUMINESCENCE; RECOMBINATION; LUMINESCENCE; CONDUCTION; SHUNTS; ENERGY;
D O I
10.1002/pssc.201200428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photoluminescence (PL) and electroluminescence (EL) have received much attention as characterization techniques for photovoltaic devices. The methods are applied to study e. g. optical band-gap, defect states, or quasi-Fermi level splitting. Spatially resolved EL imaging is used to derive local junction voltage differences making it a fast inline characterization method for solar modules. However, the interpretation of EL and PL experiments on hydrogenated microcrystalline silicon (mu c-Si:H) solar cells is more complex hampering the direct determination of local voltage differences. In this work we integrated an existing model for PL of mu c-Si:H silicon with a commercial device simulator for thin-film silicon devices. This way we extended the existing model from a spatially zero dimensional model to a one dimensional model which can also model EL. Furthermore the connection with an electrical device simulator enables the consistent modeling of EL, PL, and the electrical properties of the device. We compared experimental and simulation results for EL, PL and dark-, and illuminated-current/voltage characteristics over a wide temperature range (80 - 300 K). The simulations and experiments are in good agreement in the temperature range from 170 K up to room temperature. In experiments we observed several effects which cannot be explained in the previous zero dimensional model. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1963 / 1967
页数:5
相关论文
共 50 条
  • [21] TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells
    Chang, S. T.
    Tang, M.
    He, R. Y.
    Wang, W. -C.
    Pei, Z.
    Kung, C. -Y.
    THIN SOLID FILMS, 2010, 518 : S250 - S254
  • [22] Photo- and electroluminescence of hydrogenated nanocrystalline Si prepared by plasma enhanced chemical vapor deposition techniques
    Shim, J. H.
    Cho, N. -H.
    ECO-MATERIALS PROCESSING & DESIGN VII, 2006, 510-511 : 958 - 961
  • [23] PHOTO- AND ELECTROLUMINESCENCE OF NEODYMIUM IN GaS.
    Tagiev, B.G.
    Abushov, S.A.
    Niftiev, G.M.
    Briskina, Ch.M.
    Zolin, V.F.
    Mark Ushev, V.M.
    Aidaev, F.Sh.
    Physica Status Solidi (A) Applied Research, 1985, 89 (02):
  • [24] Photo- and electroluminescence of new organic semiconductors
    Samsonova, L. G.
    Degtyarenko, K. M.
    Gadirov, R. M.
    Odod, A. V.
    Kopylova, T. N.
    Begimova, A.
    Krasnikova, S. S.
    Yakuschenko, I. K.
    Gadomsky, S. Ya.
    Kaplunov, M. G.
    INTERNATIONAL CONFERENCE ON ATOMIC AND MOLECULAR PULSED LASERS XIII, 2018, 10614
  • [25] PHOTO- AND ELECTROLUMINESCENCE OF OXIDE-NITRIDE-OXIDE-SILICON STRUCTURES FOR SILICON-BASED OPTOELECTRONICS
    Romanov, Ivan A.
    Vlasukova, Liudmila A.
    Komarov, Fadei F.
    Parkhomenko, Irina N.
    Kovalchuk, Natalia S.
    Mohovikov, Maxim A.
    Mudryi, Alexander, V
    Milchanin, Oleg, V
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2018, 62 (05): : 546 - 554
  • [26] Hydrogenated microcrystalline silicon germanium: A bottom cell material for amorphous silicon-based tandem solar cells
    Ganguly, G
    Ikeda, T
    Nishimiya, T
    Saitoh, K
    Kondo, M
    Matsuda, A
    APPLIED PHYSICS LETTERS, 1996, 69 (27) : 4224 - 4226
  • [27] Deposition and Properties of Hydrogenated Microcrystalline Silicon (μc-Si:H) Films for Solar Cells
    Li, Yanlong
    Zhang, Zhonglin
    Gang, Hong
    Qiu, Peng
    NANOTECHNOLOGY AND PRECISION ENGINEERING, PTS 1 AND 2, 2013, 662 : 173 - +
  • [28] Large-area hydrogenated amorphous and microcrystalline silicon double-junction solar cells
    Yan, BJ
    Yue, GZ
    Banerjee, A
    Yang, J
    Guha, S
    AMORPHOUS AND NANOCRYSTALLINE SILICON SCIENCE AND TECHNOLOGY- 2004, 2004, 808 : 581 - 586
  • [29] Integration of Light Trapping Silver Nanostructures in Hydrogenated Microcrystalline Silicon Solar Cells by Transfer Printing
    Mizuno, Hidenori
    Sai, Hitoshi
    Matsubara, Koji
    Takato, Hidetaka
    Kondo, Michio
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (105):
  • [30] Intrinsic microcrystalline silicon for solar cells
    Vetterl, O
    Hapke, P
    Kluth, O
    Lambertz, A
    Wieder, S
    Rech, B
    Finger, F
    Wagner, H
    SOLID STATE PHENOMENA, 1999, 67-8 : 101 - 106