Unmanned Aerial Vehicle Landing on Maritime Vessels using Signal Prediction of the Ship Motion

被引:0
|
作者
Abujoub, Shadi [1 ]
McPhee, Johanna [1 ]
Westin, Cassidy [1 ]
Irani, Rishad A. [1 ]
机构
[1] Carleton Univ, Dept Mech & Aerosp Engnr, Ottawa, ON, Canada
来源
OCEANS 2018 MTS/IEEE CHARLESTON | 2018年
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Unmanned aerial vehicles (UAVs) are becoming more prevalent in maritime operations. For safe operation, one of the key challenges of using UAVs at sea is the relative motion that exists between the UAV and ship. For perpetual maritime operations, UAV systems need to be able to land safely on ocean vessels. Determining a 'quiescent period', where the roll and pitch angles of the ship are below a danger threshold, is a challenging problem for UAV systems. In general, current strategies rely on reactive systems and often use sensors on board the maritime vessel. The scope of the current paper is a proof-ofconcept methodology which uses a signal prediction algorithm to facilitate safer autonomous UAV-ship landings. This study uses laser ranging and detecting devices (LIDAR) in conjunction with a signal prediction algorithm (SPA) to forecast when the ship motion is within safe landing limits. ShipMo3D was used to generate twelve trial cases for UAV-ship landings on a 33 m ship. The results show that with the use of the SPA, the number of UAV landing attempts was decreased by an average of 2 attempts, per test case, when compared to a system that did not use an SPA. Moreover, the results indicate that with revised tuning of the SPA, the likelihood of a safe landing can be further improved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Simulation of Hybrid Unmanned Aerial Vehicle Motion
    Belokon, S. A.
    Derishev, D. S.
    Zolotukhin, Yu N.
    Yan, A. P.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2019, 55 (04) : 356 - 363
  • [32] Numerical Simulation of the Motion of an Unmanned Aerial Vehicle
    Akimov, Il'ya O.
    Koryanov, Vsevolod V.
    2018 3RD INTERNATIONAL CONFERENCE ON DESIGN AND MANUFACTURING ENGINEERING (ICDME 2018), 2018, 221
  • [33] An Algorithm for Landing a Quadrotor Unmanned Aerial Vehicle on an Oscillating Surface
    Das, Paul Infant Teenu Mohan
    Swami, Suraj
    Conrad, James M.
    2012 PROCEEDINGS OF IEEE SOUTHEASTCON, 2012,
  • [34] A Vision-Based Approach for Unmanned Aerial Vehicle Landing
    C. Patruno
    M. Nitti
    A. Petitti
    E. Stella
    T. D’Orazio
    Journal of Intelligent & Robotic Systems, 2019, 95 : 645 - 664
  • [35] Vision assisted autonomous landing of an unmanned aerial vehicle.
    Chitrakaran, Vilas K.
    Dawson, Darren M.
    Chen, Jian
    Feemster, Matthew
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 1465 - 1470
  • [36] Infrared-based Precision Landing for an Unmanned Aerial Vehicle
    Bottros, Kyrelloss
    Heo, Hyeonjeong
    Lee, Kyuman
    Journal of Institute of Control, Robotics and Systems, 2024, 30 (09) : 930 - 936
  • [37] Vision-based autonomous landing of an unmanned aerial vehicle
    Saripalli, S
    Montgomery, JF
    Sukhatme, GS
    2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2002, : 2799 - 2804
  • [38] A Vision-Based Approach for Unmanned Aerial Vehicle Landing
    Patruno, C.
    Nitti, M.
    Petitti, A.
    Stella, E.
    D'Orazio, T.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 95 (02) : 645 - 664
  • [39] A Vision based Landing Spot Searching for Unmanned Aerial Vehicle using Satellite Image
    Keunyoung, Park
    Doohyun, Kim
    Dongwoon, Jeon
    2015 4TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION ICIEV 15, 2015,
  • [40] Autonomous tracking and landing of an unmanned aerial vehicle on a ground vehicle in rough terrain
    Aoki, Nobuaki
    Ishigami, Genya
    ADVANCED ROBOTICS, 2023, 37 (05) : 344 - 355