Microplasmas, an emerging field of low-temperature plasma science and technology

被引:247
|
作者
Foest, R
Schmidt, M
Becker, K [1 ]
机构
[1] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA
[2] INP, D-17489 Greifswald, Germany
[3] Stevens Inst Technol, Ctr Environm Syst, Hoboken, NJ 07030 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
plasma; gas discharge; microplasma; weakly ionized gas; hollow cathode;
D O I
10.1016/j.ijms.2005.11.010
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Spatially confining atmospheric pressure, non-equilibrium plasmas to dimensions of 1 mm or less is a promising approach to the generation and maintenance of stable glow discharges at atmospheric pressure. Such microdischarges or microplasmas represent systems with new and fascinating challenges for plasma science such as the possible breakdown of "pd scaling" and the increasing dominance of boundary-dominated phenomena. Pulsed excitation on a sub-microsecond time scale results in microplasmas with significant shifts in both the temperatures and energy distribution functions of ions and electrons. This allows for the selective production of chemically reactive species and opens the door to a wide range of new applications of microplasmas in areas Such as environmental remediation, biology and biomedicine, intense light sources in the ultraviolet and vacuum ultraviolet, and gas and surface analysis - to name just a few. This topical review addresses some of the scientific challenges and technological opportunities afforded by microplasmas. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 102
页数:16
相关论文
共 50 条
  • [31] Advanced Low-Temperature Geothermal Technology
    Thomas, Delbert D.
    CLEAN TECHNOLOGY 2008: BIO ENERGY, RENEWABLES, GREEN BUILDING, SMART GRID, STORAGE, AND WATER, 2008, : 164 - 165
  • [32] THERMODYNAMIC FUNCTIONS OF A LOW-TEMPERATURE PLASMA
    LARKIN, AI
    SOVIET PHYSICS JETP-USSR, 1960, 11 (06): : 1363 - 1364
  • [33] Exchange corrections in a low-temperature plasma
    Ekman, Robin
    Zamanian, Jens
    Brodin, Gert
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [34] INTERFEROMETRY OF LOW-TEMPERATURE HETEROGENEOUS PLASMA
    KUTOVOI, VD
    PETROV, GD
    SAMARSKII, PA
    TREGUBOV, SI
    HIGH TEMPERATURE, 1976, 14 (05) : 999 - 1001
  • [35] DISSOCIATION OF PHOSPHATES IN A LOW-TEMPERATURE PLASMA
    BUROV, IS
    BYSYUK, VV
    MOSSE, AL
    PECHKOVSKII, VV
    TETEREVKOV, AI
    HIGH ENERGY CHEMISTRY, 1975, 9 (04) : 271 - 275
  • [36] Low-temperature plasma in biology and medicine
    Hori, Masaru
    Choi, Eun Ha
    Toyokuni, Shinya
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2016, 605 : 1 - 2
  • [37] Low-temperature plasma treatment of Tencel
    Mak, C. M.
    Yuen, C. W. M.
    Ku, S. K. A.
    Kan, C. W.
    JOURNAL OF THE TEXTILE INSTITUTE, 2006, 97 (06) : 533 - 540
  • [38] On the Similarities of Low-Temperature Plasma Discharges
    Fu, Yangyang
    Verboncoeur, John P.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (05) : 1994 - 2003
  • [39] STABILITY THEORY OF LOW-TEMPERATURE PLASMA
    ALANAKYAN, YR
    ZHURNAL TEKHNICHESKOI FIZIKI, 1977, 47 (06): : 1177 - 1180
  • [40] Methane conversion in low-temperature plasma
    Pushkarev, A. I.
    Zhu, Ai-Min
    Li, Xiao-Song
    Sazonov, R. V.
    HIGH ENERGY CHEMISTRY, 2009, 43 (03) : 156 - 162