Equivalent projectors for virtual element methods

被引:427
|
作者
Ahmad, B. [1 ]
Alsaedi, A. [1 ]
Brezzi, F. [1 ,2 ,3 ]
Marini, L. D. [3 ,4 ]
Russo, A. [3 ,5 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] IUSS, I-27100 Pavia, Italy
[3] CNR, IMATI, I-27100 Pavia, Italy
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[5] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20153 Milan, Italy
关键词
Virtual elements; Mimetic finite differences; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; MIMETIC DISCRETIZATIONS; CONVERGENCE ANALYSIS;
D O I
10.1016/j.camwa.2013.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the original virtual element space with degree of accuracy k, projector operators in the H-1-seminorm onto polynomials of degree <= k can be easily computed. On the other hand, projections in the L-2 norm are available only on polynomials of degree <= k - 2 (directly from the degrees of freedom). Here, we present a variant of the virtual element method that allows the exact computations of the L-2 projections on all polynomials of degree <= k. The interest of this construction is illustrated with some simple examples, including the construction of three-dimensional virtual elements, the treatment of lower-order terms, the treatment of the right-hand side, and the L-2 error estimates. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:376 / 391
页数:16
相关论文
共 50 条
  • [21] Virtual boundary element-equivalent collocation method for the plane magnetoelectroelastic solids
    Yao, WA
    Li, XC
    Yu, GR
    STRUCTURAL ENGINEERING AND MECHANICS, 2006, 22 (01) : 1 - 16
  • [22] Conforming and Nonconforming Virtual Element Methods for Signorini Problems
    Zeng, Yuping
    Zhong, Liuqiang
    Cai, Mingchao
    Wang, Feng
    Zhang, Shangyou
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (01)
  • [23] OPTIMAL MAXIMUM NORM ESTIMATES FOR VIRTUAL ELEMENT METHODS
    He, Wen-ming
    Guo, Hailong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (03) : 1251 - 1280
  • [24] Two robust virtual element methods for the Brinkman equations
    Wang, Gang
    Wang, Ying
    He, Yinnian
    CALCOLO, 2021, 58 (04)
  • [25] Virtual element methods on meshes with small edges or faces
    Brenner, Susanne C.
    Sung, Li-Yeng
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (07): : 1291 - 1336
  • [26] VIRTUAL ELEMENT METHODS FOR BIOT-KIRCHHOFF POROELASTICITY
    Khot, Rekha
    Mora, David
    Ruiz-Baier, Ricardo
    MATHEMATICS OF COMPUTATION, 2025, 94 (353) : 1101 - 1146
  • [27] Virtual Element Methods for Parabolic Problems on Polygonal Meshes
    Vacca, Giuseppe
    da Veiga, Lourenco Beirao
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (06) : 2110 - 2134
  • [28] Two robust virtual element methods for the Brinkman equations
    Gang Wang
    Ying Wang
    Yinnian He
    Calcolo, 2021, 58
  • [29] Conforming and nonconforming virtual element methods for elliptic problems
    Cangiani, Andrea
    Manzini, Gianmarco
    Sutton, Oliver J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) : 1317 - 1354
  • [30] Coupling of virtual element and boundary element methods for the solution of acoustic scattering problems
    Gatica, Gabriel N.
    Meddahi, Salim
    JOURNAL OF NUMERICAL MATHEMATICS, 2020, 28 (04) : 223 - 245