Steepest descent algorithms in a space of measures

被引:24
|
作者
Molchanov, I
Zuyev, S
机构
[1] Univ Glasgow, Dept Stat, Glasgow G12 8QW, Lanark, Scotland
[2] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow G1 1XH, Lanark, Scotland
关键词
gradient methods; steepest descent; k-means; P-means; optimal experimental design; Poisson process; Boolean model; Splus; R;
D O I
10.1023/A:1014878317736
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper describes descent type algorithms suitable for solving optimisation problems for functionals that depend on measures. We mention several examples of such problems that appear in optimal design, cluster analysis and optimisation of spatial distribution of coverage processes.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 50 条