Steepest descent algorithms in a space of measures

被引:24
|
作者
Molchanov, I
Zuyev, S
机构
[1] Univ Glasgow, Dept Stat, Glasgow G12 8QW, Lanark, Scotland
[2] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow G1 1XH, Lanark, Scotland
关键词
gradient methods; steepest descent; k-means; P-means; optimal experimental design; Poisson process; Boolean model; Splus; R;
D O I
10.1023/A:1014878317736
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper describes descent type algorithms suitable for solving optimisation problems for functionals that depend on measures. We mention several examples of such problems that appear in optimal design, cluster analysis and optimisation of spatial distribution of coverage processes.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 50 条
  • [1] Steepest descent algorithms in a space of measures
    Ilya Molchanov
    Sergei Zuyev
    Statistics and Computing, 2002, 12 : 115 - 123
  • [2] Dithered steepest descent algorithms
    Milisavljevic, Mile
    Verriest, Erik I.
    Proceedings of the IEEE Conference on Decision and Control, 1998, 4 : 3886 - 3887
  • [3] Dithered steepest descent algorithms
    Milisavljevic, M
    Verriest, EI
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3886 - 3887
  • [4] Steepest descent on a uniformly convex space
    Zahran, MM
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (04) : 1539 - 1555
  • [5] On steepest descent algorithms for discrete convex functions
    Murota, K
    SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (03) : 699 - 707
  • [6] Steepest descent algorithms for neural network controllers and filters
    Piche, Stephen W., 1600, Publ by IEEE, Piscataway, NJ, United States (05):
  • [7] Steepest Descent Algorithms in Optimization with Good Convergence Properties
    Goh, B. S.
    Ye, Feng
    Zhou, Shuisheng
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 1526 - 1530
  • [8] NEW ADAPTIVE ALGORITHMS BASED ON THE METHOD OF STEEPEST DESCENT
    ARUNACHALAM, KG
    CHESMORE, ED
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1993, 74 (01) : 1 - 19
  • [9] Proportionate-type steepest descent and NLMS algorithms
    Wagner, Kevin T.
    Doroslovacki, Milos I.
    2007 41ST ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1 AND 2, 2007, : 47 - +
  • [10] Continuous Steepest Descent in Hilbert Space: Linear Case
    Neuberger, J. W.
    SOBOLEV GRADIENTS AND DIFFERENTIAL EQUATIONS, SECOND EDITION, 2010, 1670 : 15 - 17