Cellular Legendrian contact homology for surfaces, part I

被引:8
|
作者
Rutherford, Dan [1 ]
Sullivan, Michael [2 ]
机构
[1] Ball State Univ, Muncie, IN 47306 USA
[2] Univ Massachusetts, Amherst, MA 01003 USA
关键词
Legendrian surfaces; Legendrian contact homology; GENERATING FAMILIES; SUBMANIFOLDS; INVARIANT; KNOTS;
D O I
10.1016/j.aim.2020.107348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a computation of the Legendrian contact homology (LCH) DGA for an arbitrary generic Legendrian surface L in the 1-jet space of a surface. As input we require a suitable cellular decomposition of the base projection of L. A collection of generators is associated to each cell, and the differential is given by explicit matrix formulas. In the present article, we prove that the equivalence class of this cellular DGA does not depend on the choice of decomposition, and in the sequel papers [35,36] we use this result to show that the cellular DGA is equivalent to the usual Legendrian contact homology DGA defined via holomorphic curves. Extensions are made to allow Legendrians with non-generic cone-point singularities. We apply our approach to compute the LCH DGA for several examples including an infinite family, and to give general formulas for DGAs of front spinnings allowing for the axis of symmetry to intersect L. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:71
相关论文
共 50 条
  • [41] Lagrangian surfaces with Legendrian boundary
    Li, Mingyan
    Wang, Guofang
    Weng, Liangjun
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1589 - 1598
  • [42] Automatic transversality in contact homology I: regularity
    Jo Nelson
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2015, 85 : 125 - 179
  • [43] Automatic transversality in contact homology I: regularity
    Nelson, Jo
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2015, 85 (02): : 125 - 179
  • [44] On the equivalence of Legendrian and transverse invariants in knot Floer homology
    Baldwin, John A.
    Vela-Vick, David Shea
    Vertesi, Vera
    GEOMETRY & TOPOLOGY, 2013, 17 (02) : 925 - 974
  • [45] Non-loose Legendrian spheres with trivial Contact Homology DGA (vol 9, pg 826, 2016)
    Ekholm, Tobias
    JOURNAL OF TOPOLOGY, 2018, 11 (04) : 1133 - 1135
  • [46] Averaging of Legendrian Submanifolds of Contact Manifolds
    Marco Zambon
    Annals of Global Analysis and Geometry, 2005, 28 : 301 - 308
  • [47] Contact Dynamics: Legendrian and Lagrangian Submanifolds
    Esen, Ogul
    Lainz Valcazar, Manuel
    de Leon, Manuel
    Marrero, Juan Carlos
    MATHEMATICS, 2021, 9 (21)
  • [48] Legendrian links and the spanning tree model for Khovanov homology
    Wu, Hao
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 1745 - 1757
  • [49] Invariants of Legendrian and transverse knots in monopole knot homology
    Baldwin, John A.
    Sivek, Steven
    JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (04) : 959 - 1000