Sturm-Liouville eigenvalue problems for half-linear ordinary differential equations

被引:14
|
作者
Kusano, T [1 ]
Naito, M
机构
[1] Fukuoka Univ, Fac Sci, Dept Appl Math, Fukuoka 8140180, Japan
[2] Ehime Univ, Fac Sci, Dept Math Sci, Matsuyama, Ehime 7908577, Japan
关键词
D O I
10.1216/rmjm/1020171678
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss the half-linear Sturm-Liouville eigenvalue problem [GRAPHICS] for the case where q(t) may change signs in the interval [a, b]. As a typical result we have the following theorem. If q(t) takes both a positive value and a negative value, then the totality of eigenvalues consists of two sequences {lambda(N)(+)}(n=0)(infinity) and {lambdaN-}(N=0)(infinity) such that...< λ(-)(n) < (...) < lambda(1)(-) < λ(-)(0) < 0 < lambda(0)(+) < λ(+)(1) < (...) < lambda(n)(+) < (...), lim(n-->infinity) lambda(n)(+) = +infinity and lim(n-->infinity) lambda(n)(-) = -infinity. The eigenfunctions associated with lambda = lambda(n)(+) and lambda(n)(-) have exactly n zeros in (a, b). This gives a complete generalization of the well-known results for the linear case (alpha = 1).
引用
收藏
页码:1039 / 1054
页数:16
相关论文
共 50 条
  • [21] EIGENVALUE AND EIGENFUNCTION COMPUTATIONS FOR STURM-LIOUVILLE PROBLEMS
    BAILEY, PB
    GARBOW, BS
    KAPER, HG
    ZETTL, A
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (04): : 491 - 499
  • [22] The dual eigenvalue problems for the Sturm-Liouville system
    Cheng, Y. H.
    Kung, S. Y.
    Law, C. K.
    Lian, W. C.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (09) : 2556 - 2563
  • [23] Sturm-Liouville eigenvalue problems on time scales
    Agarwal, RP
    Bohner, M
    Wong, PJY
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) : 153 - 166
  • [24] Sturm-Liouville eigenvalue problems on time scales
    Agarwal, Ravi P.
    Bohner, Martin
    Wong, Patricia J.Y.
    Applied Mathematics and Computation (New York), 1999, 99 (2-3): : 153 - 166
  • [25] NONLINEAR ORDINARY AND FUNCTIONAL STURM-LIOUVILLE PROBLEMS
    KUIPER, HJ
    DERRICK, WR
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (02) : 179 - 190
  • [26] Half-linear eigenvalue problems
    Eberhard, W
    Elbert, A
    MATHEMATISCHE NACHRICHTEN, 1997, 183 : 55 - 72
  • [27] A catalogue of Sturm-Liouville differential equations
    Everitt, WN
    Sturm-Liouville Theory: Past and Present, 2005, : 271 - 331
  • [28] Some criteria for discreteness of spectrum of half-linear fourth order Sturm-Liouville problem
    Drabek, Pavel
    Kuliev, Komil
    Marletta, Marco
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (02):
  • [29] Sturm-Liouville Problem for Second Order Ordinary Differential Equations Across Resonance
    Yang, Xue
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) : 814 - 822
  • [30] INVERSE EIGENVALUE PROBLEMS FOR NONLOCAL STURM-LIOUVILLE OPERATORS
    Nizhnik, L. P.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2009, 15 (01): : 41 - 47