Degree sequence and supereulerian graphs

被引:3
|
作者
Fan, Suohai [2 ]
Lai, Hong-Jian [1 ]
Shao, Yehong [3 ]
Zhang, Taoye [4 ]
Zhou, Ju
机构
[1] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[2] Jinan Univ Guangzhou, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
[3] Ohio Univ So, Ironton, OH 45638 USA
[4] Penn State Worthington Scranton, Dept Math, Dunmore, PA 18512 USA
关键词
Degree sequence; Collapsible graphs; Hamiltonian line graphs; Supereulerian graphs;
D O I
10.1016/j.disc.2007.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence d = (d(1), d(2),...,d(n)) is graphic if there is a simple graph G with degree sequence d, and such a graph G is called a realization of d. A graphic sequence d is line-hamiltonian if d has a realization G such that L(G) is hamiltonian, and is supereulerian if d has a realization G with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic sequence d = (d(1), d(2),...,d(n)) has a supereulerian realization if and only if d(n) >= 2 and that d is line-hamiltonian if and only if either d(1) = n - 1, or Sigma(di=1) d(i) <= Sigma(dj >= 2)(d(j) - 2). (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:6626 / 6631
页数:6
相关论文
共 50 条
  • [21] Degree Condition for a Digraph to be Supereulerian
    Algefari, Mansour J.
    GRAPHS AND COMBINATORICS, 2022, 38 (01)
  • [22] Supereulerian graphs and the Petersen graph
    Catlin, PA
    Lai, HJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 66 (01) : 123 - 139
  • [23] Supereulerian width of dense graphs
    Xiong, Wei
    Xu, Jinquan
    Miao, Zhengke
    Wu, Yang
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2017, 340 (12) : 2995 - 3001
  • [24] Supereulerian graphs and the Petersen graph
    Li, Xiao Min
    Lei, Lan
    Lai, Hong-Jian
    Zhang, Meng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (02) : 291 - 304
  • [25] ENUMERATION OF GRAPHS BY DEGREE SEQUENCE
    HANLON, P
    JOURNAL OF GRAPH THEORY, 1979, 3 (03) : 295 - 299
  • [26] Snarks, Hypohamiltonian Graphs and Non-Supereulerian Graphs
    Zhi-Hong Chen
    Graphs and Combinatorics, 2016, 32 : 2267 - 2273
  • [27] Snarks, Hypohamiltonian Graphs and Non-Supereulerian Graphs
    Chen, Zhi-Hong
    GRAPHS AND COMBINATORICS, 2016, 32 (06) : 2267 - 2273
  • [28] Asymptotic enumeration of graphs by degree sequence, and the degree sequence of a random graph
    Liebenau, Anita
    Wormald, Nick
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (01) : 1 - 40
  • [29] Supereulerian graphs and the Petersen graph, II
    Chen, ZH
    Lai, HJ
    ARS COMBINATORIA, 1998, 48 : 271 - 282
  • [30] Forbidden subgraphs for supereulerian and hamiltonian graphs
    Yang, Xiaojing
    Du, Junfeng
    Xiong, Liming
    DISCRETE APPLIED MATHEMATICS, 2021, 288 : 192 - 200