Degree sequence;
Collapsible graphs;
Hamiltonian line graphs;
Supereulerian graphs;
D O I:
10.1016/j.disc.2007.11.008
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A sequence d = (d(1), d(2),...,d(n)) is graphic if there is a simple graph G with degree sequence d, and such a graph G is called a realization of d. A graphic sequence d is line-hamiltonian if d has a realization G such that L(G) is hamiltonian, and is supereulerian if d has a realization G with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic sequence d = (d(1), d(2),...,d(n)) has a supereulerian realization if and only if d(n) >= 2 and that d is line-hamiltonian if and only if either d(1) = n - 1, or Sigma(di=1) d(i) <= Sigma(dj >= 2)(d(j) - 2). (C) 2007 Elsevier B.V. All rights reserved.
机构:
Chongqing Technol & Business Univ, Dept Math & Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Dept Math & Stat, Chongqing 400067, Peoples R China
Li, Xiao Min
Lei, Lan
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Technol & Business Univ, Dept Math & Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Dept Math & Stat, Chongqing 400067, Peoples R China
Lei, Lan
Lai, Hong-Jian
论文数: 0引用数: 0
h-index: 0
机构:
W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaChongqing Technol & Business Univ, Dept Math & Stat, Chongqing 400067, Peoples R China
Lai, Hong-Jian
Zhang, Meng
论文数: 0引用数: 0
h-index: 0
机构:
W Virginia Univ, Dept Math, Morgantown, WV 26506 USAChongqing Technol & Business Univ, Dept Math & Stat, Chongqing 400067, Peoples R China