On a Class of Singular Sublinear p-Laplacian Problems

被引:0
|
作者
Hai, D. D. [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2008年 / 51卷 / 03期
关键词
p-Laplace; Sublinear; Singular boundary value problems;
D O I
10.1619/fesi.51.463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish existence results for positive solutions of the boundary value problem [GRAPHICS] where phi(x) = vertical bar x vertical bar(p-2)x, p > 1, q is an element of C[a, b], r is an element of L(1)(a, b), f is allowed to have negative values and become infinite at 0, and lambda is a positive parameter.
引用
收藏
页码:463 / 476
页数:14
相关论文
共 50 条
  • [31] Positive Solutions of Singular Boundary Value Problems with p-Laplacian Operator
    Jiang, Yanjun
    Liu, Quanhui
    Zhang, Min
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS I AND II, 2009, : 685 - 688
  • [32] Existence Criteria For Singular Boundary Value Problems With p-Laplacian Operators
    Guo, Yan-Ping
    Jiang, Wei-Hua
    Xu, Fang
    APPLIED MATHEMATICS E-NOTES, 2006, 6 : 276 - 282
  • [33] Numerical methods for singular boundary value problems involving the p-laplacian
    Lima, Pedro
    Morgado, Luisa
    MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE, 2009, 1124 : 214 - +
  • [34] Existence results for a class of nonlocal problems involving p-Laplacian
    Yang Yang
    Jihui Zhang
    Boundary Value Problems, 2011
  • [35] Existence results for a borderline case of a class of p-Laplacian problems
    Candela, Anna Maria
    Perera, Kanishka
    Salvatore, Addolorata
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 255
  • [36] Nontrivial solutions for a class of resonant p-Laplacian Neumann problems
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : 6365 - 6372
  • [37] MULTIPLICITY OF SOLUTIONS FOR A CLASS OF RESONANT p-LAPLACIAN DIRICHLET PROBLEMS
    Papageorgiou, Evgenia H.
    Papageorgiou, Nicolaos S.
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 241 (02) : 309 - 328
  • [38] UNIQUENESS FOR A CLASS p-LAPLACIAN PROBLEMS WHEN A PARAMETER IS LARGE
    Alreshidi, B.
    Hai, D. D.
    OPUSCULA MATHEMATICA, 2024, 44 (01) : 5 - 17
  • [39] Existence results for a class of nonlocal problems involving p-Laplacian
    Yang, Yang
    Zhang, Jihui
    BOUNDARY VALUE PROBLEMS, 2011, : 1 - 8
  • [40] MULTIPLICITY RESULTS FOR p-SUBLINEAR p-LAPLACIAN PROBLEMS INVOLVING INDEFINITE EIGENVALUE PROBLEMS VIA MORSE THEORY
    Perera, Kanishka
    Agarwal, Ravi P.
    O'Regan, Donal
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,