Space-Time Crystal and Space-Time Group

被引:46
|
作者
Xu, Shenglong [1 ,2 ,3 ]
Wu, Congjun [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
TOPOLOGICAL INSULATORS; FERMIONS;
D O I
10.1103/PhysRevLett.120.096401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined spacetime periodicities in D + 1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1 + 1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2 thorn 1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D + 1)-dimensional space-time crystal.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] STOCHASTIC SPACE-TIME
    INGRAHAM, RL
    NUOVO CIMENTO, 1964, 34 (01): : 182 - +
  • [32] Space-time diagrammatics
    Chrusciel, Piotr T.
    Oelz, Christa R.
    Szybka, Sebastian J.
    PHYSICAL REVIEW D, 2012, 86 (12):
  • [33] THE SPACE-TIME OF THE LYRIC
    Zlejsia, Barbora
    SLOVENSKA LITERATURA, 2022, 69 (05): : 546 - 549
  • [34] On the Inextendibility of Space-Time
    Manchak, John Byron
    PHILOSOPHY OF SCIENCE, 2017, 84 (05) : 1215 - 1225
  • [35] SPACE-TIME ON A SEASHELL
    HAYES, B
    AMERICAN SCIENTIST, 1995, 83 (03) : 214 - 218
  • [36] THE DIMENSIONS OF SPACE-TIME
    不详
    NEW SCIENTIST, 1986, 110 (1510) : 27 - 27
  • [37] HOLES IN SPACE-TIME
    ROSS, DK
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (02): : 203 - 210
  • [38] Discrete space-time
    Krugly, AL
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (04) : 975 - 984
  • [39] IMMERSIONS OF SPACE-TIME
    RASTALL, P
    CANADIAN JOURNAL OF PHYSICS, 1969, 47 (06) : 607 - &
  • [40] ON QUANTIZED SPACE-TIME
    ICHIYANAGI, M
    PROGRESS OF THEORETICAL PHYSICS, 1981, 65 (04): : 1472 - 1475