A Reinforcement Learning Approach for Flexible Job Shop Scheduling Problem With Crane Transportation and Setup Times

被引:65
|
作者
Du, Yu [1 ]
Li, Junqing [1 ,2 ]
Li, Chengdong [3 ]
Duan, Peiyong [4 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
[2] Liaocheng Univ, Sch Comp Sci, Liaocheng 252059, Shandong, Peoples R China
[3] Shandong Jianzhu Univ, Sch Informat & Elect Engn, Jinan 252101, Peoples R China
[4] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
美国国家科学基金会;
关键词
Cranes; Job shop scheduling; Transportation; Scheduling; Optimization; Heuristic algorithms; Reinforcement learning; Deep Q-network (DQN); flexible job shop scheduling; multiobjective optimization; reinforcement learning (RL); OPTIMIZATION; ALGORITHM; HYBRID;
D O I
10.1109/TNNLS.2022.3208942
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Flexible job shop scheduling problem (FJSP) has attracted research interests as it can significantly improve the energy, cost, and time efficiency of production. As one type of reinforcement learning, deep Q-network (DQN) has been applied to solve numerous realistic optimization problems. In this study, a DQN model is proposed to solve a multiobjective FJSP with crane transportation and setup times (FJSP-CS). Two objectives, i.e., makespan and total energy consumption, are optimized simultaneously based on weighting approach. To better reflect the problem realities, eight different crane transportation stages and three typical machine states including processing, setup, and standby are investigated. Considering the complexity of FJSP-CS, an identification rule is designed to organize the crane transportation in solution decoding. As for the DQN model, 12 state features and seven actions are designed to describe the features in the scheduling process. A novel structure is applied in the DQN topology, saving the calculation resources and improving the performance. In DQN training, double deep Q-network technique and soft target weight update strategy are used. In addition, three reported improvement strategies are adopted to enhance the solution qualities by adjusting scheduling assignments. Extensive computational tests and comparisons demonstrate the effectiveness and advantages of the proposed method in solving FJSP-CS, where the DQN can choose appropriate dispatching rules at various scheduling situations.
引用
收藏
页码:5695 / 5709
页数:15
相关论文
共 50 条
  • [31] Flexible Job-shop Scheduling Problem with Sequence-dependent Setup Times using Genetic Algorithm
    Azzouz, Ameni
    Ennigrou, Meriem
    Ben Said, Lamjed
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 2 (ICEIS), 2016, : 47 - 53
  • [32] Enhancing Quality-Diversity algorithm by reinforcement learning for Flexible Job Shop Scheduling with transportation constraints
    Qin, Haoxiang
    Xiang, Yi
    Liu, Fangqing
    Han, Yuyan
    Wang, Yuting
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 93
  • [33] Modeling & solving flexible job shop problem with sequence dependent setup times
    Imanipour, N.
    2006 International Conference on Service Systems and Service Management, Vols 1 and 2, Proceedings, 2006, : 1205 - +
  • [34] A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem
    Xu, Shuai
    Li, Yanwu
    Li, Qiuyang
    ELECTRONICS, 2024, 13 (18)
  • [35] Distributional reinforcement learning with the independent learners for flexible job shop scheduling problem with high variability
    Oh, Seung Heon
    Cho, Young In
    Woo, Jong Hun
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (04) : 1157 - 1174
  • [36] Low-Carbon Flexible Job Shop Scheduling Problem Based on Deep Reinforcement Learning
    Tang, Yimin
    Shen, Lihong
    Han, Shuguang
    SUSTAINABILITY, 2024, 16 (11)
  • [37] A Multi-Agent Reinforcement Learning Approach to the Dynamic Job Shop Scheduling Problem
    Inal, Ali Firat
    Sel, Cagri
    Aktepe, Adnan
    Turker, Ahmet Kursad
    Ersoz, Suleyman
    SUSTAINABILITY, 2023, 15 (10)
  • [38] An Online Reinforcement Learning Approach for Solving the Dynamic Flexible Job-Shop Scheduling Problem for Multiple Products and Constraints
    Said, Nour El-Din Ali
    Samaha, Yassin
    Azab, Eman
    Shihata, Lamia A.
    Mashaly, Maggie
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 134 - 139
  • [39] Research on Flexible Job Shop Low Carbon Scheduling with Setup Times and Key Objectives
    Li M.
    Lei D.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (21): : 139 - 149
  • [40] A Q-learning-based hyper-heuristic evolutionary algorithm for the distributed flexible job-shop scheduling problem with crane transportation
    Zhang, Zi-Qi
    Wu, Fang-Chun
    Qian, Bin
    Hu, Rong
    Wang, Ling
    Jin, Huai-Ping
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 234