Coupled thermoplastic analysis at finite strain with nonlinear kinematic hardening

被引:0
|
作者
Meggyes, A [1 ]
机构
[1] Tech Univ Budapest, Dept Appl Mech, H-1521 Budapest, Hungary
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The additive decomposition of the strain is derived from the multiplicative decomposition of the deformation gradient. The constitutive relations describe temperature dependent thermoplastic material behaviour. Both isotropic and nonlinear kinematic hardening are considered. The mechanical model is implemented in the FEM system MARC as user defined subroutines.
引用
收藏
页码:S841 / S842
页数:2
相关论文
共 50 条
  • [41] NECESSITY OF KINEMATIC STRAIN HARDENING IN SIMULATING IMPACT EVENTS
    Kirloskar, Sharang
    Singh, Gurmeet
    Kumar, Avinash
    PROCEEDINGS OF THE ASME GAS TURBINE INDIA CONFERENCE, 2017, VOL 2, 2018,
  • [42] Finite element analysis of a coupled nonlinear system
    Loula, Abimael F. D.
    Zhu, Jiang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2001, 20 (03): : 321 - 339
  • [43] A comparative study of kinematic hardening rules at finite deformations
    Tsakmakis, C
    Willuweit, A
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (04) : 539 - 554
  • [44] Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications
    Ali Chaaba
    Lahbib Bousshine
    Mohamed Aboussaleh
    Hassan El Boudaia
    Journal of Mechanical Science and Technology, 2011, 25 : 2859 - 2870
  • [45] Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications
    Chaaba, Ali
    Bousshine, Lahbib
    Aboussaleh, Mohamed
    Boudaia, El Hassan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2011, 25 (11) : 2859 - 2870
  • [46] A NONLINEAR KINEMATIC HARDENING THEORY FOR CYCLIC THERMOPLASTICITY AND THERMOVISCOPLASTICITY
    MCDOWELL, DL
    INTERNATIONAL JOURNAL OF PLASTICITY, 1992, 8 (06) : 695 - 728
  • [47] Non-saturating nonlinear kinematic hardening laws
    Desmorat, Rodrigue
    COMPTES RENDUS MECANIQUE, 2010, 338 (03): : 146 - 151
  • [48] Maximum norm wellposedness of nonlinear kinematic hardening models
    Brokate, M
    Krejci, P
    CONTINUUM MECHANICS AND THERMODYNAMICS, 1997, 9 (06) : 365 - 380
  • [49] NUMERICAL ALGORITHMS FOR PLASTICITY MODELS WITH NONLINEAR KINEMATIC HARDENING
    De Angelis, Fabio
    Taylor, Robert L.
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS V - VI, 2014, : 6560 - 6570
  • [50] Maximum norm wellposedness of nonlinear kinematic hardening models
    Martin Brokate
    Pavel Krejčí
    Continuum Mechanics and Thermodynamics, 1997, 9 : 365 - 380