Tunneling in Fermi systems with quadratic band crossing points

被引:18
|
作者
Mandal, Ipsita [1 ,2 ]
机构
[1] Univ Stavanger, Fac Sci & Technol, N-4036 Stavanger, Norway
[2] NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
关键词
SHOT-NOISE;
D O I
10.1016/j.aop.2020.168235
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the tunneling of quasiparticles through a rectangular potential barrier of finite height and width, in 2d and 3d semimetals with band structures consisting of a quadratic band crossing point. We compute the transmission coefficient at various incident angles, and also the conductivity and the Fano factor. We discuss the distinguishing signatures of these transport properties in comparison with other semimetals, as well as electrons in normal metals. (C) 2020 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Bifurcation problem of critical points for quadratic differential systems
    Zhang, X
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1997, 18 (12) : 1177 - 1190
  • [32] Bifurcation problem of critical points for quadratic differential systems
    Xiang Z.
    Applied Mathematics and Mechanics, 1997, 18 (12) : 1177 - 1190
  • [33] STABILITY OF CRITICAL POINTS OF QUADRATIC HOMOGENEOUS DYNAMICAL SYSTEMS
    Boujemaa, Hamza
    El Qotbi, Said
    Rouiouih, Hicham
    GLASNIK MATEMATICKI, 2016, 51 (01) : 165 - 173
  • [34] Asymmetric Tunneling Conductance and the Non-Fermi Liquid Behavior of Strongly Correlated Fermi Systems
    V. R. Shaginyan
    A. Z. Msezane
    G. S. Japaridze
    V. A. Stephanovich
    Y. S. Leevik
    JETP Letters, 2018, 108 : 335 - 340
  • [35] Asymmetric Tunneling Conductance and the Non-Fermi Liquid Behavior of Strongly Correlated Fermi Systems
    Shaginyan, V. R.
    Msezane, A. Z.
    Japaridze, G. S.
    Stephanovich, V. A.
    Leevik, Y. S.
    JETP LETTERS, 2018, 108 (05) : 335 - 340
  • [36] TUNNELING AND THE BAND-STRUCTURE OF CHAOTIC SYSTEMS
    LEBOEUF, P
    MOUCHET, A
    PHYSICAL REVIEW LETTERS, 1994, 73 (10) : 1360 - 1363
  • [37] CALCULATION OF SHAPE AND FERMI-SURFACE DEPENDENT CONTRIBUTIONS TO BAND-CROSSING FREQUENCIES
    ZHANG, JY
    RIEDINGER, LL
    GARRETT, JD
    PHYSICAL REVIEW C, 1983, 28 (01): : 446 - 449
  • [38] Fermi points and topological quantum phase transitions in a multi-band superconductor
    Puel, T. O.
    Sacramento, P. D.
    Continentino, M. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (42)
  • [39] Fermion-fermion interaction driven instability and criticality of quadratic band crossing systems with the breaking of time-reversal symmetry
    Zhai, Ya-Hui
    Wang, Jing
    NUCLEAR PHYSICS B, 2021, 966
  • [40] Theory of the motion at the band crossing points in bulk semiconductor crystals and in inversion layers
    Esseni, David
    Palestri, Pierpaolo
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (05)