Sentiment Analysis of Modern Standard Arabic and Egyptian Dialectal Arabic Tweets

被引:0
|
作者
El-Naggar, Nadine [1 ]
El-Sonbaty, Yasser [2 ]
Abou El-Nasr, Mohamad [1 ]
机构
[1] Arab Acad Sci Technol & Maritime Transport, Dept Comp Engn, Alexandria, Egypt
[2] Arab Acad Sci Technol & Maritime Transport, Dept Comp Sci, Alexandria, Egypt
来源
关键词
Sentiment Analysis; Modern Standard Arabic; Egyptian Dialectal Arabic; Emojis; Tweets; Plutchik's Wheel of Emotions;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Dialectal Arabic is frequently used to express opinions on social media, but it has been scarcely researched. Most previous work on Arabic sentiment analysis systems has focused on Modern Standard Arabic, using standard verbal cues as features. This paper presents a hybrid approach for sentiment analysis of Modern Standard Arabic and Egyptian Dialectal Arabic using verbal and non-verbal cues in the form of text and emojis. Using Plutchik's Wheel of Emotions, an emoji lexicon is created as a resource for non-verbal emotion classifications. The results show, from the achieved accuracy and F-Measure of 90%, that the proposed algorithm outperforms previous work.
引用
收藏
页码:880 / 887
页数:8
相关论文
共 50 条
  • [41] Sentiment Analysis in Arabic
    Siddiqui, Sanjeera
    Monem, Azza Abdel
    Shaalan, Khaled
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2016, 2016, 9612 : 409 - 414
  • [42] SentiArabic: A Sentiment Analyzer for Standard Arabic
    Eskander, Ramy
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), 2018, : 1215 - 1219
  • [43] Light verbs in standard and Egyptian Arabic
    Ibrahim, Amr Helmy
    PERSPECTIVES ON ARABIC LINGUISTICS XVII-XVIII, 2005, 267 : 117 - 131
  • [44] Sentiment Analysis of Arabic Tweets using ARABERT as a fine tuner and feature extractors
    Alsugair, Athir Mohammed
    Alghamdi, Norah Saleh
    2024 11TH IEEE SWISS CONFERENCE ON DATA SCIENCE, SDS 2024, 2024, : 31 - 36
  • [45] Evaluating sentiment analysis for Arabic Tweets using machine learning and deep learning
    Alshutayri, Areej
    Alamoudi, Huda
    Alshehri, Boushra
    Aldhahri, Eman
    Alsaleh, Iqbal
    Aljojo, Nahla
    Alghoson, Abdullah
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2022, 32 (04): : 7 - 18
  • [46] Depression detection for twitter users using sentiment analysis in English and Arabic tweets
    Helmy, Abdelmoniem
    Nassar, Radwa
    Ramdan, Nagy
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 147
  • [47] Exploring Sentiment Analysis on Arabic Tweets about the COIVD-19 Vaccines
    Alsabban, Wesam H.
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2022, 16 (02): : 268 - 272
  • [48] Aspect-based Sentiment Analysis and Location Detection for Arabic Language Tweets
    AlShammari, Norah
    AlMansour, Amal
    APPLIED COMPUTER SYSTEMS, 2022, 27 (02) : 119 - 127
  • [49] Syntax-ignorant N-gram embeddings for dialectal Arabic sentiment analysis
    Mulki, Hala
    Haddad, Hatem
    Gridach, Mourad
    Babaoglu, Ismail
    NATURAL LANGUAGE ENGINEERING, 2021, 27 (03) : 315 - 338
  • [50] Sentiment Analysis: Arabic Sentiment Lexicons
    Sabra, Khaled S. i
    Zantout, Rached N.
    El Abed, Mohamad A.
    Hamandi, Lama
    2017 SENSORS NETWORKS SMART AND EMERGING TECHNOLOGIES (SENSET), 2017,