Hydrogen Production by Methanol Steam Reforming Using Microreactor

被引:14
|
作者
Kawamura, Yoshihiro [1 ]
Ogura, Naotsugu [1 ]
Igarashi, Akira [2 ]
机构
[1] CASIO Comp Co Ltd, Ctr Res & Dev, Tokyo 2058555, Japan
[2] Kogakuin Univ, Fac Engn, Dept Appl Chem, Hachioji, Tokyo 1920015, Japan
关键词
Hydrogen production; Methanol steam reforming; Copper catalyst; Small PEFC; Structured catalyst; Microreactor; COPPER-BASED CATALYSTS; CU/ZNO/AL2O3; CATALYST; SMALL PEMFC; PRECURSORS; MECHANISM; KINETICS;
D O I
10.1627/jpi.56.288
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A microreactor technology, in which a microchannel is used as a catalytic reaction field in order to supply hydrogen to a small polymer electrolyte fuel cell (PEFC) for portable electronic devices, was described. The reduction of heat loss in the microreactor is the primary requirement for improving system efficiency, since heat release in microreactors is higher than in conventional reactors due to the increased specific surface area. Therefore, the methanol steam reforming, operated below 300 degrees C, is an appropriate process for the hydrogen production using the microreactor. First, the high-performance Cu/ZnO/Al2O3 catalyst for methanol reforming at low temperature was developed under the optimized preparation condition. The miniaturized methanol reformer was then developed to utilize this Cu/ZnO/Al2O3 catalyst. The length of the microchannel was determined based on one-dimensional mass and heat balance analyses. The microreactor was fabricated from silicon and glass substrates using a number of microfabrication techniques. Methanol reforming using this reactor has been demonstrated to reach the levels necessary to power a 1 W-class small PEFC system. The multilayered integrating the miniature methanol reformer with a CO remover, a catalytic combustor as a heat source for methanol reforming, vaporizers, and several necessary functional elements for hydrogen production has also been successfully fabricated. Finally, the microreactor system has been demonstrated to produce hydrogen at a rate sufficient to generate electrical power of 2.5 W.
引用
收藏
页码:288 / 297
页数:10
相关论文
共 50 条
  • [11] Hydrogen production by methanol steam reforming in a disc microreactor with tree-shaped flow architectures
    Yao, Feng
    Chen, Yongping
    Peterson, G. P.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 64 : 418 - 425
  • [12] Simulations of Hydrogen Production by Methanol Steam Reforming
    Chiu, Yu-Jen
    Chiu, Han-Chieh
    Hsieh, Ren-Horn
    Jang, Jer-Huan
    Jiang, Bo-Yi
    5TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS ENGINEERING (CPESE 2018), 2019, 156 : 38 - 42
  • [13] Optimization of methanol steam reforming for hydrogen production
    Pan, L.-W. (panlw@dicp.ac.cn), 2013, Science Press (41):
  • [14] Methanol steam reforming for hydrogen production in a minireactor
    Wang, Feng
    Li, Longjian
    Qi, Bo
    Cui, Wenzhi
    Xin, Mingdao
    Chen, Qinghua
    Deng, Lianfeng
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2008, 42 (04): : 509 - 514
  • [15] Intensification of hydrogen production by methanol steam reforming
    Sanz, Oihane
    Velasco, Ion
    Perez-Miqueo, Inigo
    Poyato, Rosalia
    Antonio Odriozola, Jose
    Montes, Mario
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (10) : 5250 - 5259
  • [16] A novel thermally autonomous methanol steam reforming microreactor using SiC honeycomb ceramic as catalyst support for hydrogen production
    Wang, Yancheng
    Liu, Haiyu
    Mei, Deqing
    Wu, Qiong
    Zhou, Haonan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (51) : 25878 - 25892
  • [17] A microreactor for in-situ hydrogen production by catalytic methanol reforming
    Pattkar, AV
    Kothare, MV
    Karnik, SV
    Hatalis, MK
    MICROREATION TECHNOLOGY, 2001, : 332 - 342
  • [18] Porous copper fiber sintered felts with surface microchannels for methanol steam reforming microreactor for hydrogen production
    Ke, Yuzhi
    Zhou, Wei
    Chu, Xuyang
    Yuan, Ding
    Wan, Shaolong
    Yu, Wei
    Liu, Yangxu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) : 5755 - 5765
  • [19] Development of methanol steam reforming microreactor based on stacked wave sheets and copper foam for hydrogen production
    Wu, Qiong
    Wang, Yancheng
    Mei, Deqing
    Si, Shangyu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 6282 - 6294
  • [20] A thermally autonomous methanol steam reforming microreactor with porous copper foam as catalyst support for hydrogen production
    Wang, Yancheng
    Hong, Ziyue
    Mei, Deqing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (09) : 6734 - 6744