Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter

被引:10
|
作者
Ryu, Duchwan [1 ]
Liang, Faming [2 ]
Mallick, Bani K. [2 ]
机构
[1] Georgia Hlth Sci Univ, Dept Biostat & Epidemiol, Augusta, GA 30912 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Bayesian nonparametric regression; Dynamic model; Dynamically weighted importance sampling; Radial basis function networks; MONTE-CARLO METHODS; REJECTION CONTROL; KALMAN FILTER; ASSIMILATION; REGRESSION;
D O I
10.1080/01621459.2012.734151
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The sea surface temperature (SST) is an important factor of the earth climate system. A deep understanding of SST is essential for climate monitoring and prediction. In general, SST follows a nonlinear pattern in both time and location and can be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle filter to estimate the parameters of the dynamic model. We analyze the SST observed in the Caribbean Islands area after a hurricane using the proposed dynamic model. Comparing to the traditional grid-based approach that requires a supercomputer due to its high computational demand, our approach requires much less CPU time and makes real-time forecasting of SST doable on a personal computer. Supplementary materials for this article are available online.
引用
收藏
页码:111 / 123
页数:13
相关论文
共 50 条
  • [21] Modeling Marine Electromagnetic Survey with Radial Basis Function Networks
    Arif, Agus
    Asirvadam, Vijanth S.
    Karsiti, M. N.
    JOURNAL OF ICT RESEARCH AND APPLICATIONS, 2011, 5 (02) : 141 - 156
  • [22] Turbojet modeling in windmilling based on radial basis function networks
    Yu, D.R.
    Guo, Y.F.
    Niu, J.
    Shi, X.X.
    He, B.C.
    Tuijin Jishu/Journal of Propulsion Technology, 2001, 22 (03): : 183 - 186
  • [23] Dynamically structured radial basis function neural networks for robust aircraft flight control
    Yan, L
    Sundararajan, N
    Saratchandran, P
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 3501 - 3505
  • [24] The Vector Clustering Based on the Recursive Particle Swarm Optimization with Radial Basis Function Networks Modeling System
    Jia, Xue-ming
    2016 INTERNATIONAL CONFERENCE ON ENVIRONMENT, CLIMATE CHANGE AND SUSTAINABLE DEVELOPMENT (ECCSD 2016), 2016, : 298 - 304
  • [25] Interference cancellation using radial basis function networks
    Cha, I
    Kassam, SA
    SIGNAL PROCESSING, 1995, 47 (03) : 247 - 268
  • [26] Ray Tracing Using Radial Basis Function Networks
    Wiens, Travis
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2016, 138 (02):
  • [27] Feature selection using radial basis function networks
    Basak, J
    Mitra, S
    NEURAL COMPUTING & APPLICATIONS, 1999, 8 (04): : 297 - 302
  • [28] Feature Selection Using Radial Basis Function Networks
    J. Basak
    S. Mitra
    Neural Computing & Applications, 1999, 8 : 297 - 302
  • [29] Multivariate interpolation using radial basis function networks
    Dang Thi Thu Hien
    Hoang Xuan Huan
    Huu Tue Huynh
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2009, 1 (03) : 291 - 309
  • [30] A Weighted Radial Basis Function Interpolation Method for High Accuracy DEM Modeling
    Gao Y.
    Zhu Y.
    Chen C.
    Hu Z.
    Hu B.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2023, 48 (08): : 1373 - 1379