Cell barrier characterization in transwell inserts by electrical impedance spectroscopy

被引:29
|
作者
Linz, Georg [1 ,2 ]
Djeljadini, Suzana [1 ,2 ]
Steinbeck, Lea [1 ,2 ]
Koese, Gurbet [3 ]
Kiessling, Fabian [3 ]
Wessling, Matthias [1 ,2 ]
机构
[1] DWI Leibniz Inst Interact Mat, Forckenbeckstr 50, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Aachener Verfahrenstech Chem Proc Engn, Forckenbeckstr 51, D-52074 Aachen, Germany
[3] Rhein Westfal TH Aachen, Fac Med, Inst Expt Mol Imaging, D-52074 Aachen, Germany
来源
BIOSENSORS & BIOELECTRONICS | 2020年 / 165卷 / 165期
基金
欧洲研究理事会;
关键词
Caco-2; Membrane capacitance; Electrical impedance spectroscopy (EIS); Sonoporation; Transepithelial electrical resistance (TEER); Transwell insert; APICAL MEMBRANE; LINE CACO-2; CAPACITANCE; RESISTANCE; DECREASE; SYSTEM; AREA;
D O I
10.1016/j.bios.2020.112345
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We describe an impedance-based method for cell barrier integrity testing. A four-electrode electrical impedance spectroscopy (EIS) setup can be realized by simply connecting a commercial chopstick-like electrode (STX-1) to a potentiostat allowing monitoring cell barriers cultivated in transwell inserts. Subsequent electric circuit modeling of the electrical impedance results the capacitive properties of the barrier next to the well-known transepithelial electrical resistance (TEER). The versatility of the new method was analyzed by the EIS analysis of a Caco-2 monolayer in response to (a) different membrane coating materials, (b) two different permeability enhancers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and saponin, and (c) sonoporation. For the different membrane coating materials, the TEERs of the standard and new protocol coincide and increase during cultivation, while the capacitance shows a distinct maximum for three different surface materials (no coating, Matrigel (R), and collagen I). The permeability enhancers cause a decline in the TEER value, but only saponin alters the capacitance of the cell layer by two orders of magnitude. Hence, cell layer capacitance and TEER represent two independent properties characterizing the monolayer. The use of commercial chopstick-like electrodes to access the impedance of a barrier cultivated in transwell inserts enables remarkable insight into the behavior of the cellular barrier with no extra work for the researcher. This simple method could evolve into a standard protocol used in cell barrier research.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Novel microfluidic device for cell characterization by impedance spectroscopy
    Iliescu, Ciprian
    Poenar, Daniel
    Leck, Kwono Joo
    Carp, Mihaela
    Pang, Ah Ju
    Loe, Felicia C.
    Iliescu, Florina S.
    BIOMEDICAL APPLICATIONS OF MICRO- AND NANOENGINEERING III, 2007, 6416
  • [32] Electrical impedance spectroscopy of silicon
    Vedde, J
    Viscor, P
    PROCEEDINGS OF THE ELECTROCHEMICAL SOCIETY SYMPOSIUM ON DIAGNOSTIC TECHNIQUES FOR SEMICONDUCTOR MATERIALS AND DEVICES, 1997, 97 (12): : 365 - 376
  • [33] Electrical impedance spectroscopy evaluates organotypic epidermis formation and skin barrier function in vitro
    van den Brink, N.
    Pardow, F.
    Meesters, L.
    Niehues, H.
    van Vlijmen-Willems, I.
    Rodijk-Olthuis, D.
    Roelofs, S.
    Brewer, M.
    van den Bogaard, E.
    Smits, J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2023, 143 (11) : S353 - S353
  • [34] ELECTRICAL CHARACTERIZATION OF BISMUTH ORTHOVANADATE USING AC-IMPEDANCE SPECTROSCOPY
    WOOD, P
    SINCLAIR, DC
    GLASSER, FP
    SOLID STATE IONICS, 1993, 66 (1-2) : 151 - 158
  • [35] Electrical Impedance Spectroscopy for Electro-Mechanical Characterization of Conductive Fabrics
    Bera, Tushar Kanti
    Mohamadou, Youssoufa
    Lee, Kyounghun
    Wi, Hun
    Oh, Tong In
    Woo, Eung Je
    Soleimani, Manuchehr
    Seo, Jin Keun
    SENSORS, 2014, 14 (06): : 9738 - 9754
  • [36] Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review
    Grossi M.
    Riccò B.
    Journal of Sensors and Sensor Systems, 2017, 6 (02) : 303 - 325
  • [37] Electrical impedance spectroscopy analysis to evaluate organotypic epidermis formation and barrier function in vitro
    van den Brink, N.
    Meesters, L. D.
    Pardow, F.
    Roelofs, S.
    Smits, J. P.
    van den Bogaard, E. H.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (12) : S213 - S213
  • [38] Position-dependent characterization of bone tissue with electrical impedance spectroscopy
    Schaur, S.
    Jakoby, B.
    Kronreif, G.
    2012 IEEE SENSORS PROCEEDINGS, 2012, : 1352 - 1355
  • [39] In vivo and in situ ischemic tissue characterization using electrical impedance spectroscopy
    Casas, O
    Bragós, R
    Riu, PJ
    Rosell, J
    Tresànchez, M
    Warren, M
    Rodriguez-Sinovas, A
    Carreño, A
    Cinca, J
    ELECTRICAL BIOIMPEDANCE METHODS: APPLICATIONS TO MEDICINE AND BIOTECHNOLOGY, 1999, 873 : 51 - 58
  • [40] Direct assessment of skin epidermal barrier by electrical impedance spectroscopy (Late Breaking Abstract)
    Rinaldi, A. O.
    Dreher, A.
    Wawrzyniak, P.
    Morita, H.
    Grant, S.
    Svedenhag, P.
    Akdis, C. A.
    ALLERGY, 2019, 74 : 184 - 184