Nonparametric inference on jump regression surface

被引:4
|
作者
Jose, CT [1 ]
Ismail, B
机构
[1] Cent Plantat Crops Res Inst, Reg Stn, Vittal 574243, Karnataka, India
[2] Mangalore Univ, Dept Stat, Mangalore 574199, India
关键词
change point; discontinuity; kernel estimator; local polynomial regression; nonparametric regression;
D O I
10.1080/10485250108832878
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimators for jump location curve and jump size function of a two dimensional jump regression function (jump regression surface) are proposed. The estimators are obtained by fitting kernel weighted least squares regression based on the observations in the four quadrants of a neighborhood of a given point. The proposed procedure can be used in the case of jump in the regression surface and/or in its slope (jump in the partial derivatives). The limiting distributions and the asymptotic properties of the estimators are investigated. The procedure is illustrated through a simulation study.
引用
收藏
页码:791 / 813
页数:23
相关论文
共 50 条
  • [31] Nonparametric Inference for Time-Varying Coefficient Quantile Regression
    Wu, Weichi
    Zhou, Zhou
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2017, 35 (01) : 98 - 109
  • [32] Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
    Faes, C.
    Ormerod, J. T.
    Wand, M. P.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 959 - 971
  • [33] Estimation and Inference for Nonparametric Expected Shortfall Regression over RKHS
    Yu, Myeonghun
    Wang, Yue
    Xie, Siyu
    Tan, Kean Ming
    Zhou, Wen-Xin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2025,
  • [34] Empirical likelihood based inference for the derivative of the nonparametric regression function
    Qin, GS
    Tsao, M
    BERNOULLI, 2005, 11 (04) : 715 - 735
  • [35] Large-sample inference for nonparametric regression with dependent errors
    Robinson, PM
    ANNALS OF STATISTICS, 1997, 25 (05): : 2054 - 2083
  • [36] Using bimodal kernel for inference in nonparametric regression with correlated errors
    Kim, Tae Yoon
    Park, Byeong U.
    Moon, Myung Sang
    Kim, Chiho
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (07) : 1487 - 1497
  • [37] Nonparametric inference of gradual changes in the jump behaviour of time-continuous processes
    Hoffmann, Michael
    Vetter, Mathias
    Dette, Holger
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (11) : 3679 - 3723
  • [38] Mean field variational Bayesian inference for nonparametric regression with measurement error
    Pham, Tung H.
    Ormerod, John T.
    Wand, M. P.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 68 : 375 - 387
  • [39] Improved inference in nonparametric regression using L(k)-smoothing splines
    Abramovich, F
    Steinberg, DM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 49 (03) : 327 - 341
  • [40] Jump detection in time series nonparametric regression models: a polynomial spline approach
    Yujiao Yang
    Qiongxia Song
    Annals of the Institute of Statistical Mathematics, 2014, 66 : 325 - 344