ATTRACTIVE AND MEAN CONVERGENCE THEOREMS FOR TWO COMMUTATIVE NONLINEAR MAPPINGS IN BANACH SPACES

被引:0
|
作者
Takahashi, Wataru [1 ]
Wen, Ching-Feng
Yao, Jen-Chih
机构
[1] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2017年 / 26卷 / 02期
基金
日本学术振兴会;
关键词
FIXED-POINT THEOREMS; GENERALIZED HYBRID MAPPINGS; PROXIMAL-TYPE ALGORITHM; NONEXPANSIVE-MAPPINGS; ERGODIC THEOREM; HILBERT-SPACE; WEAK-CONVERGENCE; APPROXIMATION; CONTRACTIONS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the class of 2-generalized nonspreading mappings which was defined by [29] in a Banach space and covers 2-generalized hybrid mappings in a Hilbert space, we prove an attractive point theorem in a Banach space. Then we prove a mean convergence theorem of Baillon's type [2] without convexity for commutative 2-generalized nonspreading mappings in a Banach space.
引用
收藏
页码:327 / 345
页数:19
相关论文
共 50 条