Regulation of glucose kinetics during exercise by the glucagon-like peptide-1 receptor

被引:5
|
作者
Burmeister, M. A. [1 ]
Bracy, D. P. [2 ]
James, F. D. [2 ]
Holt, R. M. [1 ]
Ayala, J. [1 ]
King, E. M. [3 ]
Wasserman, D. H. [2 ]
Drucker, D. J. [4 ]
Ayala, J. E. [1 ,3 ]
机构
[1] Sanford Burnham Med Res Inst Lake Nona, Diabet & Obes Res Ctr, Metab Signaling & Dis Program, Orlando, FL 32827 USA
[2] Vanderbilt Univ, Sch Med, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[3] Sanford Burnham Med Res Inst Lake Nona, Cardiometab Phenotyping Core, Orlando, FL 32827 USA
[4] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2012年 / 590卷 / 20期
基金
美国国家卫生研究院;
关键词
INSULIN-SECRETION; GLP-1; RECEPTORS; ENERGY-BALANCE; INCRETIN; METABOLISM; MICE; SUPPRESSION; SENSITIVITY; MUSCLE; AMIDE;
D O I
10.1113/jphysiol.2012.234914
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Key points Glucagon-like peptide-1 (Glp1) regulates hepatic glucose production (HGP) and muscle glucose uptake (MGU) via its ability to stimulate insulin secretion. Using exercise as a means to stimulate glucose flux independently of insulin secretion, we observed that Glp1 receptor (Glp1r) knockout (Glp1r-/-) mice become hyperglycaemic but display normal rates of MGU. Since euglycaemia during exercise is typically maintained by matching rates of HGP to rates of MGU, we hypothesize that exercise-induced hyperglycaemia in Glp1r-/- mice is due to excessive HGP. Using innovative catheterization and isotope dilution techniques, we demonstrate that hyperglycaemia in exercising Glp1r-/- mice is associated with excessive HGP and glucagon secretion. These results suggest an essential and novel role for basal Glp1r signalling in the suppression of alpha cell secretion during exercise. Abstract In response to oral glucose, glucagon-like peptide-1 receptor (Glp1r) knockout (Glp1r-/-) mice become hyperglycaemic due to impaired insulin secretion. Exercise also induces hyperglycaemia in Glp1r-/- mice. In contrast to oral glucose, exercise decreases insulin secretion. This implies that exercise-induced hyperglycaemia in Glp1r-/- mice results from the loss of a non-insulinotropic effect mediated by the Glp1r. Muscle glucose uptake (MGU) is normal in exercising Glp1r-/- mice. Thus, we hypothesize that exercise-induced hyperglycaemia in Glp1r-/- mice is due to excessive hepatic glucose production (HGP). Wild-type (Glp1r+/+) and Glp1r-/- mice implanted with venous and arterial catheters underwent treadmill exercise or remained sedentary for 30 min. [3-3H]glucose was used to estimate rates of glucose appearance (Ra), an index of HGP, and disappearance (Rd). 2[14C]deoxyglucose was used to assess MGU. Glp1r-/- mice displayed exercise-induced hyperglycaemia due to an excessive increase in Ra but normal Rd and MGU. Exercise-induced glucagon levels were 2-fold higher in Glp1r-/- mice, resulting in a 2-fold higher glucagon:insulin ratio. Since inhibition of the central Glp1r stimulates HGP, we tested whether intracerebroventricular (ICV) infusion of the Glp1r antagonist exendin(939) (Ex9) in Glp1r+/+ mice would result in exercise-induced hyperglycaemia. ICV Ex9 did not enhance glucose levels or HGP during exercise, suggesting that glucoregulatory effects of Glp1 during exercise are mediated via the pancreatic Glp1r. In conclusion, functional disruption of the Glp1r results in exercise-induced hyperglycaemia associated with an excessive increase in glucagon secretion and HGP. These results suggest an essential role for basal Glp1r signalling in the suppression of alpha cell secretion during exercise.
引用
收藏
页码:5245 / 5255
页数:11
相关论文
共 50 条
  • [41] Role of leptin in the regulation of glucagon-like peptide-1 secretion
    Anini, Y
    Brubaker, PL
    DIABETES, 2003, 52 (02) : 252 - 259
  • [42] Is Glucagon-like peptide-1 for real?
    Murr, Michel M.
    SURGERY FOR OBESITY AND RELATED DISEASES, 2014, 10 (05) : 786 - 786
  • [43] Glucagon-Like Peptide-1 Agonists
    Stanton, Eloise W.
    Manasyan, Artur
    Banerjee, Rakhi
    Hong, Kurt
    Koesters, Emma
    Daar, David A.
    ANNALS OF PLASTIC SURGERY, 2025, 94 (01) : 121 - 127
  • [44] Glucagon-like peptide-1 agonists
    Padwal, Raj
    BMJ-BRITISH MEDICAL JOURNAL, 2012, 344
  • [45] A role for glucagon-like peptide-1 in the central regulation of feeding
    Turton, MD
    OShea, D
    Gunn, I
    Beak, SA
    Edwards, CMB
    Meeran, K
    Choi, SJ
    Taylor, GM
    Heath, MM
    Lambert, PD
    Wilding, JPH
    Smith, DM
    Ghatei, MA
    Herbert, J
    Bloom, SR
    NATURE, 1996, 379 (6560) : 69 - 72
  • [46] The Role of Muramyl Dipeptide in Glucagon-Like Peptide-1 Regulation
    Williams, Laura
    Alshehri, Amal
    Mustafa, Salma
    Gagnon, Jeffrey
    DIABETES, 2020, 69
  • [47] A role for Glucagon-Like Peptide-1 in the regulation of β-cell autophagy
    Arden, Catherine
    PEPTIDES, 2018, 100 : 85 - 93
  • [48] A role for central glucagon-like peptide-1 in temperature regulation
    OShea, D
    Gunn, I
    Chen, XH
    Bloom, S
    Herbert, J
    NEUROREPORT, 1996, 7 (03) : 830 - 832
  • [49] Role of central glucagon-like peptide-1 in stress regulation
    Ghosal, Sriparna
    Myers, Brent
    Herman, James P.
    PHYSIOLOGY & BEHAVIOR, 2013, 122 : 201 - 207
  • [50] Neural regulation of glucagon-like peptide-1 secretion in pigs
    Hansen, L
    Lampert, S
    Mineo, H
    Holst, JJ
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2004, 287 (05): : E939 - E947