A New Multiple Kernel Approach for Visual Concept Learning

被引:0
|
作者
Yang, Jingjing [1 ,2 ,3 ]
Li, Yuanning [1 ,2 ,3 ]
Tian, Yonghong [3 ]
Duan, Lingyu [3 ]
Gao, Wen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[3] Peking Univ, Sch EE & CS, Inst Digital Med, Beijing 100871, Peoples R China
关键词
Visual Concept Learning; Support Vector Machine; Multiple Kernel Learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel multiple kernel method to learn the optimal classification function for visual concept. Although many carefully designed kernels have been proposed in the literature to measure the visual similarity, few works have been done on how these kernels really affect the learning performance. We propose a Per-Sample Based Multiple Kernel Learning method (PS-MKL) to investigate the discriminative power of each training sample in different basic kernel spaces. The optimal, sample-specific kernel is learned as a linear combination of a set of basic kernels, which leads to a convex optimization problem with a unique global optimum. As illustrated in the experiments on the Caltech 101 and the Wikipedia MM dataset, the proposed PS-MKL outperforms the traditional Multiple Kernel Learning methods (MKL) and achieves comparable results with the state-of-the-art methods of learning visual concepts.
引用
收藏
页码:250 / +
页数:3
相关论文
共 50 条
  • [21] MILKDE: A new approach for multiple instance learning based on positive instance selection and kernel density estimation
    Faria, A. W. C.
    Coelho, F. G. F.
    Silva, A. M.
    Rocha, H. P.
    Almeida, G. M.
    Lemos, A. P.
    Braga, A. P.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 59 : 196 - 204
  • [22] Multiple kernel learning by empirical target kernel
    Wang, Peiyan
    Cai, Dongfeng
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (02)
  • [23] Multiple Instance Learning via Multiple Kernel Learning
    Yang, Bing
    Li, Qian
    Jing, Ling
    Zhen, Ling
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 160 - 167
  • [24] A MULTIMODAL MULTIPLE KERNEL LEARNING APPROACH TO ALZHEIMER'S DISEASE DETECTION
    Donini, Michele
    Monteiro, Joao M.
    Pontil, Massimiliano
    Shawe-Taylor, John
    Mourao-Miranda, Janaina
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [25] Multimodal Video Concept Detection via Bag of Auditory Words and Multiple Kernel Learning
    Muehling, Markus
    Ewerth, Ralph
    Zhou, Jun
    Freisleben, Bernd
    ADVANCES IN MULTIMEDIA MODELING, 2012, 7131 : 40 - 50
  • [26] A Novel Multiple Kernel Learning Approach for Semi-Supervised Clustering
    Zare, T.
    Sadeghi, M. T.
    Abutalebi, H. R.
    2013 8TH IRANIAN CONFERENCE ON MACHINE VISION & IMAGE PROCESSING (MVIP 2013), 2013, : 451 - 456
  • [27] An image classification approach based on sparse coding and multiple kernel learning
    Wang, Q. (qwang@nwpu.edu.cn), 1600, Chinese Institute of Electronics (40):
  • [28] A majorization-minimization approach to Lq norm multiple kernel learning
    Liang, Zhizheng
    Xia, Shixiong
    Liu, Jin
    Zhou, Yong
    Zhang, Lei
    2013 SECOND IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR 2013), 2013, : 366 - 370
  • [29] A Multiple Kernel Learning Approach to Multi-Modal Pedestrian Classification
    San-Biagio, Marco
    Ulas, Aydin
    Crocco, Marco
    Cristani, Marco
    Castellani, Umberto
    Murino, Vittorio
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2412 - 2415
  • [30] SPARSITY IN MULTIPLE KERNEL LEARNING
    Koltchinskii, Vladimir
    Yuan, Ming
    ANNALS OF STATISTICS, 2010, 38 (06): : 3660 - 3695