Chemical and structural stability of superconducting In5Bi3 driven by spin-orbit coupling

被引:3
|
作者
Chen, Siyu [1 ]
Maezono, Ryo [2 ,3 ]
Chen, Jiasheng [1 ]
Grosche, F. Malte [1 ]
Pickard, Chris J. [4 ,5 ]
Monserrat, Bartomeu [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] JAIST, Sch Informat Sci, Asahidai 1-1, Nomi, Ishikawa 9231292, Japan
[3] RIKEN, Computat Engn Applicat Unit, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[4] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[5] Tohoku Univ, Adv Inst Mat Res, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
来源
JOURNAL OF PHYSICS-MATERIALS | 2020年 / 3卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
spin-orbit coupling; superconductivity; structural properties; chemical properties; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; CRYSTAL-STRUCTURE; X-RAY; PSEUDOPOTENTIALS; TEMPERATURE; TRANSITION; PHONONS;
D O I
10.1088/2515-7639/ab4c2b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Relativistic effects play a prominent role in many electronic material properties such as the Rashba and Dresselhaus spin splitting in inversion asymmetric crystals, or the bulk band gap in topological insulators. By contrast, macroscopic material properties are typically not connected to relativistic phenomena. As an exception to this rule, we show that the macroscopic chemical and structural properties of superconducting In5Bi3 are driven by relativistic physics. In the non-relativistic limit In5Bi3 decomposes into elemental indium and bismuth, but the inclusion of relativistic spin-orbit coupling chemically stabilizes the In5Bi3 stoichiometry. Similarly, the structural stability of tetragonal In5Bi3 is driven by the spin-orbit interaction, which eliminates a phonon instability present in the non-relativistic limit. Low-temperature resistivity and heat capacity measurements show that In5Bi3 is a strong coupling superconductor, with a superconducting critical temperature of 4.2 K and a superconducting critical field of 0.3 T. The unconventional interplay between relativity with chemistry and structure, together with the presence of superconductivity, make In5Bi3 a versatile material that provides, for example, a simple model for the study of strong coupling superconductivity in quasiperiodic crystals.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Spin-orbit coupling in periodically driven optical lattices
    Struck, J.
    Simonet, J.
    Sengstock, K.
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [12] Majorana fermions in superconducting nanowires without spin-orbit coupling
    Kjaergaard, Morten
    Woelms, Konrad
    Flensberg, Karsten
    PHYSICAL REVIEW B, 2012, 85 (02):
  • [13] Superconducting pairing symmetry and spin-orbit coupling in proximitized graphene
    Alsharari, Abdulrhman M.
    Ulloa, Sergio E.
    PHYSICAL REVIEW B, 2020, 102 (10)
  • [14] Spontaneous Currents in Superconducting Systems with Strong Spin-Orbit Coupling
    Mironov, S.
    Buzdin, A.
    PHYSICAL REVIEW LETTERS, 2017, 118 (07)
  • [15] SPIN-ORBIT COUPLING AND NUCLEAR MAGNETIC RESONANCE IN SUPERCONDUCTING METALS
    HINES, WA
    KNIGHT, WD
    PHYSICAL REVIEW B, 1971, 4 (03): : 893 - &
  • [16] Magnetoelectric Effects in Superconducting Nanowires with Rashba Spin-Orbit Coupling
    Ojanen, Teemu
    PHYSICAL REVIEW LETTERS, 2012, 109 (22)
  • [17] Stability of excited dressed states with spin-orbit coupling
    Zhang, Long
    Zhang, Jin-Yi
    Ji, Si-Cong
    Du, Zhi-Dong
    Zhai, Hui
    Deng, Youjin
    Chen, Shuai
    Zhang, Peng
    Pan, Jian-Wei
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [18] Spin-resolved Hall effect driven by spin-orbit coupling
    Li, J
    Hu, L
    Shen, SQ
    PHYSICAL REVIEW B, 2005, 71 (24)
  • [19] Spin chaos manifestation in a driven quantum billiard with spin-orbit coupling
    Khomitsky, D. V.
    Malyshev, A. I.
    Sherman, E. Ya.
    Di Ventra, M.
    PHYSICAL REVIEW B, 2013, 88 (19)
  • [20] Proximity effect in superconducting heterostructures with strong spin-orbit coupling and spin splitting
    Lu, Yao
    Heikkila, Tero T.
    PHYSICAL REVIEW B, 2019, 100 (10)