The generalized maximum angle condition for the Q1 isoparametric element

被引:0
|
作者
Hu, J [1 ]
Shi, ZC
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China
关键词
quadrilateral mesh; Q(1) isoparametric element; generalized maximum angle condition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the quadrilateral Q(1) isoparametric element and establish an optimal error estimate in H-1 norm for the interpolation operator under a weaker mesh condition which admits anisotropic quadrilaterals and allows the quadrilateral to become a regular triangle in the sense of maximum angle condition [5, 11].
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [41] MATHEMATICAL ANALYSIS FOR QUADRILATERAL ROTATED Q1 ELEMENT Ⅱ: POINCARE INEQUALITY AND TRACE INEQUALITY
    Ping-bing Ming Zhong-ci Shi (Institute of Computational Mathematics
    JournalofComputationalMathematics, 2003, (03) : 277 - 286
  • [42] Nonconforming rotated Q1 element on non-tensor product anisotropic meshes
    Shipeng Mao
    Zhongci Shi
    Science in China Series A: Mathematics, 2006, 49 : 1363 - 1375
  • [43] Nonconforming rotated Q1 element on non-tensor product anisotropic meshes
    Mao Shipeng
    Shi Zhongci
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (10): : 1363 - 1375
  • [44] A new superconvergence property of nonconforming rotated Q1 element in 3D
    Ming, Pingbing
    Shi, Zhong-Ci
    Xu, Yun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) : 95 - 102
  • [45] Nonconforming rotated Q1 element on non-tensor product anisotropic meshes
    MAO Shipeng & SHI Zhongci Institute of Computational Mathematics
    Science in China(Series A:Mathematics), 2006, (10) : 1363 - 1375
  • [46] Fast Q1 finite element for two-dimensional integral fractional Laplacian
    Yang, Yi
    Huang, Jin
    Wang, Yifei
    Deng, Ting
    Li, Hu
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 443
  • [47] A new class of nonconforming finite elements for the enrichment of Q1 element on convex polytope
    Achchab, Boujemaa
    Guessab, Allal
    Zaim, Yassine
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 657 - 668
  • [48] 'To Be, or Not To Be' Hamlet Q1, Q2 and Montaigne
    Frampton, Saul
    CRITICAL SURVEY, 2019, 31 (1-2) : 101 - 112
  • [49] Upcoming catalysts in Q1 2015
    Armando Uribe
    Nature Reviews Drug Discovery, 2015, 14 : 9 - 9