Lattice-Matched and Strain-Compensated Materials for Mid-Wave and Long-Wave Infrared Quantum Cascade Lasers

被引:2
|
作者
Wang, C. A. [1 ]
Calawa, D. R. [1 ]
Goyal, A. K. [1 ]
Menzel, S. [2 ]
Capasso, F. [2 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
[2] Harvard Univ, Sch Engn Appl Sci, Cambridge, MA 02138 USA
关键词
GAINAS/ALINAS/INP; MULTILAYERS; EPITAXY; GROWTH; WELLS;
D O I
10.1149/1.3629962
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work reports the growth and characterization of lattice-matched (LM) and strain-compensated (SC) AlInAs/GaInAs/InP heterostructures for quantum cascade lasers (QCLs) emitting in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) wavelength regions. Organometallic vapor phase epitaxy growth conditions such as temperature, growth rate, and V/III ratio were varied to establish a step-flow growth mode. Multiple-quantum-well structures with either (LM) or with SC compressive GaInAs quantum wells and tensile AlInAs barriers were grown to optimize QCL structure growth. Atomic force microscopy and high-resolution x-ray diffraction data indicate excellent structural quality materials for QCLs. LM LWIR QCLs at 9.6 mu m have pulsed peak power as high as 2.5 W/facet and pulsed wall-plug efficiency of 5.4%, while SC MWIR QCLs at 4.8 mu m have peak power of 1.7 W and 9.7% pulsed wall-plug efficiency. SC MWIR QCLs exhibit very low threshold current density of 0.8 kA/cm(2).
引用
收藏
页码:139 / 149
页数:11
相关论文
共 50 条
  • [21] Molecular Beam Epitaxy of InAsSbBi Lattice-Matched to InSb toward Long-Wave Infrared Sensing
    White, R. Corey
    Bergthold, Morgan
    Muhowski, Aaron
    Nordin, Leland
    Okoro, Iris
    Hijazi, Hussein
    Feldman, Leonard
    Wasserman, Daniel
    Bank, Seth R.
    CRYSTAL GROWTH & DESIGN, 2024, 24 (21) : 8727 - 8735
  • [22] Mid-wave infrared lasers developed at NRL
    不详
    OPTICS AND LASER TECHNOLOGY, 1998, 30 (3-4): : III - III
  • [23] MOCVD-Based Mid-Wave Infrared Quantum Cascade Lasers with Watt-Level Power
    Sun, Yongqiang
    Fei, Teng
    Li, Kun
    Guo, Kai
    Zhang, Jinchuan
    Zhuo, Ning
    Liu, Junqi
    Wang, Lijun
    Liu, Shuman
    Jia, Zhiwei
    Zhai, Shenqiang
    Liu, Fengqi
    Wang, Zhanguo
    Guangxue Xuebao/Acta Optica Sinica, 2022, 42 (22):
  • [24] Strain-compensated InGaAsSb/AlGaAsSb mid-infrared quantum-well lasers
    Li, W
    Héroux, JB
    Shao, H
    Wang, WI
    APPLIED PHYSICS LETTERS, 2004, 84 (12) : 2016 - 2018
  • [25] Strain-compensated quantum cascade lasers operating at room temperature
    Liu, FQ
    Ding, D
    Xu, B
    Zhang, YZ
    Zhang, QS
    Wang, ZG
    Jiang, DS
    Sun, BQ
    JOURNAL OF CRYSTAL GROWTH, 2000, 220 (04) : 439 - 443
  • [26] Strain-compensated InGaAs/InAlAs quantum-cascade lasers
    Liu Feng-Qi
    Wang Zhanguo
    Li Lu
    Wang Lijun
    Liu Junqi
    2009 14TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2009), 2009, : 835 - 836
  • [27] High-Efficiency Fiber Combining of Long-Wave Infrared Quantum Cascade Lasers
    Zhang Meng
    Wang Xin
    Yang Suhui
    Li Bao
    Li Zhuo
    Zhang Jinying
    Gao Yanze
    ACTA OPTICA SINICA, 2024, 44 (08)
  • [28] High-Power Thermoelectrically-Cooled and Uncooled Mid-Wave Infrared Quantum Cascade Lasers
    Maulini, Richard
    Lyakh, Arkadiy
    Tsekoun, Alexei
    Go, Rowel
    Pfluegl, Christian
    Diehl, Laurent
    Capasso, Federico
    Patel, C. Kumar N.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [29] Mid-wave and long-wave infrared transmitters and detectors for optical satellite communications-a review
    Flannigan, Liam
    Yoell, Liam
    Xu, Chang-qing
    JOURNAL OF OPTICS, 2022, 24 (04)
  • [30] Early Forest Fire Detection using dual Mid-wave and Long-wave Infrared Cameras
    Aldama, Raul-Alexander S.
    Boynton, Ansel J.
    Saghri, John A.
    Jacobs, John T.
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXVI, 2013, 8856