Rationalization of Au Concentration and Distribution in AuNi@Pt Core-Shell Nanoparticles for Oxygen Reduction Reaction

被引:55
|
作者
An, Wei [1 ,2 ]
Liu, Ping [1 ]
机构
[1] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
[2] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China
来源
ACS CATALYSIS | 2015年 / 5卷 / 11期
关键词
core-shell nanoparticles; ORR; durability; AuNi alloy; Pt shell; density functional theory (DFT); DENDRIMER-ENCAPSULATED NANOPARTICLES; TRANSITION-METAL-ALLOYS; MEMBRANE FUEL-CELLS; CARBON-MONOXIDE; SURFACE-COMPOSITION; CATALYTIC-ACTIVITY; ELECTRONIC-STRUCTURE; SKIN SURFACES; ELECTROCATALYSTS; PLATINUM;
D O I
10.1021/acscatal.5b01656
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the activity and stability of Pt-based core-shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core-shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. Our results not only highlight the importance of interplay between surface strain on the shell and the interlayer-shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core-shell (Pt) nanoparticles. Such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.
引用
收藏
页码:6328 / 6336
页数:9
相关论文
共 50 条
  • [21] Tuning the Catalytic Activity of Ru@Pt Core-Shell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness
    Yang, Lijun
    Vukmirovic, Miomir B.
    Su, Dong
    Sasaki, Kotaro
    Herron, Jeffrey A.
    Mavrikakis, Manos
    Liao, Shijun
    Adzic, Radoslav R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (04): : 1748 - 1753
  • [22] Au@Ir core-shell nanowires towards oxygen reduction reaction
    Xue, Qi
    Sun, Hui-Ying
    Li, Ya-Nan
    Zhong, Ming-Jun
    Li, Fu-Min
    Tian, Xinlong
    Chen, Pei
    Yin, Shi-Bin
    Chen, Yu
    CHEMICAL ENGINEERING JOURNAL, 2021, 421
  • [23] Core-Shell Electrocatalysts for Oxygen Reduction Reaction
    Chang Qiao-Wan
    Xiao Fei
    Xu Yuan
    Shao Min-Hua
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (01) : 9 - 17
  • [24] Structure and Activity of Novel Pt Core-Shell Catalysts for the Oxygen Reduction Reaction
    Ball, S.
    Burton, S. L.
    Fisher, J.
    O'Malley, R.
    Tessier, B.
    Theobald, B. R. C.
    Thompsett, D.
    Zhou, W. P.
    Su, D.
    Zhu, Y.
    Adzic, R.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 1023 - 1036
  • [25] Electrocatalytic activity of core-shell Au@Pt nanoparticles for the hydrogen oxidation reaction
    Montero, M. A.
    Gennero de Chialvo, M. R.
    Chialvo, A. C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (06) : 3811 - 3816
  • [26] Interface charge distribution modulation of Au@NiO Core-Shell nanoparticles for efficient oxygen evolution reaction
    Sun, Yiqiang
    Cao, Wenwen
    Lv, Yipin
    Yang, Xiaodong
    Ma, Wenguang
    Shen, Qi
    Kang, Baotao
    Li, Cuncheng
    APPLIED SURFACE SCIENCE, 2023, 637
  • [27] Multiscale modeling of strain effect on core-shell nanoparticles for oxygen reduction reaction
    Zhang, Xu
    Lu, Gang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [28] High-performance PtCux@Pt core-shell nanoparticles decorated with nanoporous Pt surfaces for oxygen reduction reaction
    Jung, Namgee
    Sohn, Yeongun
    Park, Jin Hoo
    Nahm, Kee Suk
    Kim, Pil
    Yoo, Sung Jong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 196 : 199 - 206
  • [29] Improved oxygen reduction activity on the Ih Cu@Pt core-shell nanoparticles
    Yang, Zongxian
    Geng, Zhixia
    Zhang, Yanxing
    Wang, Jinlong
    Ma, Shuhong
    CHEMICAL PHYSICS LETTERS, 2011, 513 (1-3) : 118 - 123
  • [30] Determining the morphology and concentration of core-shell Au/Ag nanoparticles
    Lyu, Jieli
    Geertsen, Valerie
    Hamon, Cyrille
    Constantin, Doru
    NANOSCALE ADVANCES, 2020, 2 (10): : 4522 - 4528