共 50 条
Deficiency in the nuclear-related factor erythroid 2 transcription factor (Nrf1) leads to genetic instability
被引:31
|作者:
Oh, Diane H.
[1
]
Rigas, Diamanda
[1
]
Cho, Ara
[1
]
Chan, Jefferson Y.
[1
]
机构:
[1] Univ Calif Irvine, Dept Lab Med & Pathol, Irvine, CA 92697 USA
基金:
美国国家卫生研究院;
关键词:
aneuploidy;
gene regulation;
knockout;
Nrf1;
oxidative stress response;
SPINDLE-ASSEMBLY CHECKPOINT;
ANEUPLOIDY;
EXPRESSION;
CANCER;
COMPONENTS;
CELLS;
INACTIVATION;
ACTIVATION;
INHIBITOR;
SIGNATURE;
D O I:
10.1111/febs.12005
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Nuclear factor erythroid-derived 2-related factor 1 (Nrf1) regulates cellular stress response genes, and has also been suggested to play a role in other cellular processes. We previously demonstrated that hepatocyte-specific deletion of Nrf1 in mice resulted in spontaneous apoptosis, inflammation, and development of liver tumors. Here, we showed that both fibroblasts derived from Nrf1 null mouse embryos and fibroblasts expressing a conditional Nrf1 allele showed increased micronuclei and formation of abnormal nuclei. Lentiviral shRNA-mediated knockdown of Nrf1 in SAOS-2 cells also resulted in increased micronuclei, abnormal mitosis and multi-nucleated cells. Metaphase analyses showed increased aneuploidy in Nrf1(-/-) embryonic fibroblasts. Nuclear defects in Nrf1-deficient cells were associated with decreased expression of various genes encoding kinetochore and mitotic checkpoint proteins. Our findings suggest that Nrf1 may play a role in maintaining genomic integrity, and that Nrf1 dysregulation may induce tumorigenesis.
引用
收藏
页码:4121 / 4130
页数:10
相关论文