A Translational Pipeline for Overall Survival Prediction of Breast Cancer Patients by Decision-Level Integration of Multi-Omics Data

被引:0
|
作者
Mitchel, Jonathan [1 ]
Chatlin, Kevin [1 ]
Tong, Li [1 ,2 ]
Wang, May D. [1 ,2 ]
机构
[1] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30322 USA
来源
2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2019年
基金
美国国家科学基金会;
关键词
Breast Cancer; Overall Survival; Multi-Omics; Decision-Level Integration; Biomarker Identification;
D O I
10.1109/bibm47256.2019.8983243
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Breast cancer is the most prevalent and among the most deadly cancers in females. Patients with breast cancer have highly variable survival rates, indicating a need to identify prognostic biomarkers. By integrating multi-omics data (e.g., gene expression, DNA methylation, miRNA expression, and copy number variations (CNVs)), it is likely to improve the accuracy of patient survival predictions compared to prediction using single modality data. Therefore, we propose to develop a machine learning pipeline using decision-level integration of multi-omics tumor data from The Cancer Genome Atlas (TCGA) to predict the overall survival of breast cancer patients. With multi-omics data consisting of gene expression, methylation, miRNA expression, and CNVs, the top-performing model predicted survival with an accuracy of 85% and area under the curve (AUC) of 87%. Furthermore, the model was able to identify which modalities best contributed to prediction performance, identifying methylation, miRNA, and gene expression as the best integrated classification combination. Our method not only recapitulated several breast cancer-specific prognostic biomarkers that were previously reported in the literature but also yielded several novel biomarkers. Further analysis of these biomarkers could lend insight into the molecular mechanisms that lead to poor survival.
引用
收藏
页码:1573 / 1580
页数:8
相关论文
共 50 条
  • [41] Integration of multi-omics data for prediction of phenotypic traits using random forest
    Acharjee, Animesh
    Kloosterman, Bjorn
    Visser, Richard G. F.
    Maliepaard, Chris
    BMC BIOINFORMATICS, 2016, 17
  • [42] Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses
    Olivier B. Bakker
    Raul Aguirre-Gamboa
    Serena Sanna
    Marije Oosting
    Sanne P. Smeekens
    Martin Jaeger
    Maria Zorro
    Urmo Võsa
    Sebo Withoff
    Romana T. Netea-Maier
    Hans J. P. M. Koenen
    Irma Joosten
    Ramnik J. Xavier
    Lude Franke
    Leo A. B. Joosten
    Vinod Kumar
    Cisca Wijmenga
    Mihai G. Netea
    Yang Li
    Nature Immunology, 2018, 19 : 776 - 786
  • [43] DeepKEGG: a multi-omics data integration framework with biological insights for cancer recurrence prediction and biomarker discovery
    Lan, Wei
    Liao, Haibo
    Chen, Qingfeng
    Zhu, Lingzhi
    Pan, Yi
    Chen, Yi-Ping Phoebe
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [44] Multi-omics data integration and modeling unravels new mechanisms for pancreatic cancer and improves prognostic prediction
    Fraunhoffer, Nicolas A.
    Abuelafia, Analia Meilerman
    Bigonnet, Martin
    Gayet, Odile
    Roques, Julie
    Nicolle, Remy
    Lomberk, Gwen
    Urrutia, Raul
    Dusetti, Nelson
    Iovanna, Juan
    NPJ PRECISION ONCOLOGY, 2022, 6 (01)
  • [45] Multi-omics data integration and modeling unravels new mechanisms for pancreatic cancer and improves prognostic prediction
    Nicolas A. Fraunhoffer
    Analía Meilerman Abuelafia
    Martin Bigonnet
    Odile Gayet
    Julie Roques
    Remy Nicolle
    Gwen Lomberk
    Raul Urrutia
    Nelson Dusetti
    Juan Iovanna
    npj Precision Oncology, 6
  • [46] Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies
    So Yeon Kim
    Hyun-Hwan Jeong
    Jaesik Kim
    Jeong-Hyeon Moon
    Kyung-Ah Sohn
    Biology Direct, 14
  • [47] Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies
    Kim, So Yeon
    Jeong, Hyun-Hwan
    Kim, Jaesik
    Moon, Jeong-Hyeon
    Sohn, Kyung-Ah
    BIOLOGY DIRECT, 2019, 14 (1)
  • [48] Breast Cancer Recurrence Risk Predictor Using a Deep Learning Multi-omics Data Integration Framework
    Rahman, Ariana
    Zhang, Yining
    Park, Jin G.
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 921 - 922
  • [49] The use of multi-omics data and approaches in breast cancer immunotherapy: a review
    Leung, Ka Lun
    Verma, Devika
    Azam, Younus Jamal
    Bakker, Emyr
    FUTURE ONCOLOGY, 2020, 16 (27) : 2101 - 2119
  • [50] Strategic Multi-Omics Data Integration via Multi-Level Feature Contrasting and Matching
    Zhang, Jinli
    Ren, Hongwei
    Jiang, Zongli
    Chen, Zheng
    Yang, Ziwei
    Matsubara, Yasuko
    Sakurai, Yasushi
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2024, 23 (04) : 579 - 590