Deep Models, Machine Learning, and Artificial Intelligence Applications in National and International Security

被引:2
|
作者
Zhao, Ying [1 ]
Flenner, Arjuna [2 ]
机构
[1] Navel Postgrad Sch, Grad Sch Operat & Informat Sci, Monterey, CA 93943 USA
[2] US Naval Air Syst Command NAVAIR, Patuxent River, MD USA
关键词
D O I
10.1609/aimag.v40i1.2845
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The spring 2019 and summer 2019 issues of AI Magazine will feature articles on deep models, machine learning; and AI applications in national and international security. These articles address many of the pressing issues involved in applying deep learning to the domain of security.
引用
收藏
页码:35 / 36
页数:2
相关论文
共 50 条
  • [41] Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues
    Ali, Muhammad
    Benfante, Viviana
    Basirinia, Ghazal
    Alongi, Pierpaolo
    Sperandeo, Alessandro
    Quattrocchi, Alberto
    Giannone, Antonino Giulio
    Cabibi, Daniela
    Yezzi, Anthony
    Di Raimondo, Domenico
    Tuttolomondo, Antonino
    Comelli, Albert
    JOURNAL OF IMAGING, 2025, 11 (02)
  • [42] Applications of deep learning method of artificial intelligence in education
    Zhang, Fan
    Wang, Xiangyu
    Zhang, Xinhong
    EDUCATION AND INFORMATION TECHNOLOGIES, 2025, 30 (02) : 1563 - 1587
  • [43] Deep learning models and the limits of explainable artificial intelligence
    Jens Christian Bjerring
    Jakob Mainz
    Lauritz Munch
    Asian Journal of Philosophy, 4 (1):
  • [44] Artificial Intelligence and Deep Learning Applications for Automotive Manufacturing
    Luckow, Andre
    Kennedy, Ken
    Ziolkowski, Marcin
    Djerekarov, Emil
    Cook, Matthew
    Duffy, Edward
    Schleiss, Michael
    Vorster, Bennie
    Weill, Edwin
    Kulshrestha, Ankit
    Smith, Melissa C.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 3144 - 3152
  • [45] The use of artificial intelligence, machine learning and deep learning in oncologic histopathology
    Sultan, Ahmed S.
    Elgharib, Mohamed A.
    Tavares, Tiffany
    Jessri, Maryam
    Basile, John R.
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2020, 49 (09) : 849 - 856
  • [47] Artificial intelligence, machine learning, and deep learning for clinical outcome prediction
    Pettit, Rowland W.
    Fullem, Robert
    Cheng, Chao
    Amos, Christopher I.
    EMERGING TOPICS IN LIFE SCIENCES, 2021, 5 (06) : 729 - 745
  • [48] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Antonio Mario Bulfamante
    Francesco Ferella
    Austin Michael Miller
    Cecilia Rosso
    Carlotta Pipolo
    Emanuela Fuccillo
    Giovanni Felisati
    Alberto Maria Saibene
    European Archives of Oto-Rhino-Laryngology, 2023, 280 : 529 - 542
  • [49] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Bulfamante, Antonio Mario
    Ferella, Francesco
    Miller, Austin Michael
    Rosso, Cecilia
    Pipolo, Carlotta
    Fuccillo, Emanuela
    Felisati, Giovanni
    Saibene, Alberto Maria
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2023, 280 (02) : 529 - 542
  • [50] Artificial intelligence, machine learning and deep learning in advanced robotics, a review
    Soori M.
    Arezoo B.
    Dastres R.
    Cognitive Robotics, 2023, 3 : 54 - 70