MULTIPLE RELEASES OF k-ANONYMOUS DATA SETS AND k-ANONYMOUS RELATIONAL DATABASES

被引:7
|
作者
Stokes, Klara [1 ]
Torra, Vicenc [2 ]
机构
[1] Univ Oberta Catalunya, Internet Interdisciplinary Inst IN3, Barcelona 08018, Catalonia, Spain
[2] CSIC, Artificial Intelligence Res Inst, IIIA, Bellaterra 08193, Catalonia, Spain
关键词
Data privacy; disclosure risk; k-anonymity; databases; MODEL;
D O I
10.1142/S0218488512400260
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In data privacy, the evaluation of the disclosure risk has to take into account the fact that several releases of the same or similar information about a population are common. In this paper we discuss this issue within the scope of k-anonymity. We also show how this issue is related to the publication of privacy protected databases that consist of linked tables. We present algorithms for the implementation of k-anonymity for this type of data.
引用
收藏
页码:839 / 853
页数:15
相关论文
共 50 条
  • [21] How anonymous is k-anonymous? Look at your quasi-ID
    Bettini, Claudio
    Wang, X. Sean
    Jajodia, Sushil
    SECURE DATA MANAGEMENT, PROCEEDINGS, 2008, 5159 : 1 - +
  • [22] A k-anonymous approach to privacy preserving collaborative filtering
    Casino, Fran
    Domingo-Ferrer, Josep
    Patsakis, Constantinos
    Puig, Domenec
    Solanas, Agusti
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (06) : 1000 - 1011
  • [23] k-Anonymous Data Privacy Protection Mechanism Based on Optimal Clustering
    Zhang Q.
    Ye A.
    Ye G.
    Deng H.
    Chen A.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (07): : 1625 - 1635
  • [24] K-anonymous multi-party secret handshakes
    Xu, Shouhuai
    Yung, Moti
    FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, 2007, 4886 : 72 - +
  • [25] Local Differential Privacy with K-anonymous for Frequency Estimation
    Zhao, Dan
    Chen, Hong
    Zhao, Suyun
    Li, Cuiping
    Zhang, Xiaoying
    Liu, Ruixuan
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5819 - 5828
  • [26] A New Method of Privacy Protection: Random k-Anonymous
    Song, Fagen
    Ma, Tinghuai
    Tian, Yuan
    Al-Rodhaan, Mznah
    IEEE ACCESS, 2019, 7 : 75434 - 75445
  • [27] Generating k-Anonymous Microdata by Fuzzy Possibilistic Clustering
    Abidi, Balkis
    Ben Yahia, Sadok
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2017, PT II, 2017, 10439 : 3 - 17
  • [28] Efficient Algorithms for K-Anonymous Location Privacy in Participatory Sensing
    Khuong Vu
    Zheng, Rong
    Gao, Jie
    2012 PROCEEDINGS IEEE INFOCOM, 2012, : 2399 - 2407
  • [29] k-Anonymous Microdata Release via Post Randomisation Method
    Ikarashi, Dai
    Kikuchi, Ryo
    Chida, Koji
    Takahashi, Katsumi
    ADVANCES IN INFORMATION AND COMPUTER SECURITY (IWSEC 2015), 2015, 9241 : 225 - 241
  • [30] Finding the Provenance of k-anonymous Data and Adding it to Association-rule Mining
    Liu Yilong
    Liu Guohua
    PROCEEDINGS OF THE 2012 EIGHTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2012), 2012, : 117 - 122