Fully Integrated Effective Fragment Molecular Orbital Method

被引:50
|
作者
Pruitt, Spencer R. [1 ]
Steinmann, Casper [2 ]
Jensen, Jan H. [2 ]
Gordon, Mark S. [1 ]
机构
[1] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[2] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark
基金
美国国家科学基金会;
关键词
INTERMOLECULAR PAULI REPULSION; POTENTIAL METHOD; WATER CLUSTERS; APPROXIMATE FORMULA; CHARGE PENETRATION; DAMPING FUNCTIONS; ENERGY; SOLVATION; MODEL; CHEMISTRY;
D O I
10.1021/ct4001119
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the effective fragment potential (EFP) method is fully integrated (FI) into the fragment molecular orbital (FMO) method to produce an effective fragment molecular orbital (EFMO) method that is able to account for all of the fundamental types of both bonded and intermolecular interactions, including many-body effects, in an accurate and efficient manner. The accuracy of the method is tested and compared to both the standard FMO method as well as to fully ab initio methods. It is shown that the FIEFMO method provides significant reductions in error while at the same time reducing the computational cost associated with standard FMO calculations by up to 96%.
引用
收藏
页码:2235 / 2249
页数:15
相关论文
共 50 条
  • [31] Fragment Molecular Orbital method: Not just for proteins anymore
    Pruitt, Spencer R.
    Gordon, Mark S.
    Fedorov, Dmitri G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [32] A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (02):
  • [33] Combined quantum Monte Carlo - effective fragment molecular orbital method: fragmentation across covalent bonds
    Zahariev, F.
    Gordon, M. S.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (26) : 14308 - 14314
  • [34] Nuclear-Electronic Orbital Method within the Fragment Molecular Orbital Approach
    Auer, Benjamin
    Pak, Michael V.
    Hammes-Schiffer, Sharon
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (12): : 5582 - 5588
  • [35] Reducing the scaling of the fragment molecular orbital method using the multipole method
    Choi, Cheol Ho
    Fedorov, Dmitri G.
    CHEMICAL PHYSICS LETTERS, 2012, 543 : 159 - 165
  • [36] Fragment molecular orbital method: an approximate computational method for large molecules
    Kitaura, K
    Ikeo, E
    Asada, T
    Nakano, T
    Uebayasi, M
    CHEMICAL PHYSICS LETTERS, 1999, 313 (3-4) : 701 - 706
  • [37] Toward large-scale fully ab initio calculations using fragment molecular orbital method on petascale computers
    Mayes, Maricris L.
    Fletcher, Graham
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [38] Towards large-scale fully ab initio calculations using fragment molecular orbital method on petascale computers
    Mayes, Maricris Lodriguito
    Alexeev, Yuri
    Fletcher, Graham
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [39] Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (10) : 5404 - 5416
  • [40] Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2009, 475 (1-3) : 124 - 131