Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source

被引:50
|
作者
Zheng, Jiashan [1 ]
机构
[1] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Peoples R China
关键词
Boundedness; Chemotaxis; Global existence; Logistic source; TIME BLOW-UP; CHEMOTAXIS SYSTEM; NONLINEAR DIFFUSION; MODEL; EQUATIONS;
D O I
10.1016/j.jmaa.2015.05.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study global solutions of a class of chemotaxis systems generalizing the prototype {u(t) = del.(phi(u)del u) - chi del.(Psi(u)del v) + au - bu(r), x is an element of Omega, t > 0, v(t) = Delta v - v + u, x is an element of Omega, t > 0 in a bounded domain Omega subset of R-N (N >= 1) with smooth boundary partial derivative Omega, phi(u) = (u+1)(-alpha), Psi(u) = u(u+1)(beta-1), and the parameters r > 1, a >= 0, b, chi > 0, and alpha, beta is an element of R. It is proved that if 0 < alpha+beta < max{r - 1 + alpha, 2/N}, or b is big enough, if beta = r - 1, then the classical solutions to the above system are uniformly-in-time bounded. Our results improve the results of Wang et al. (2014) [28] and Cao (2014) [3] and also enlarge the range of the results of Tao and Winkler (2012) [25] and Ishida et al. (2014) [14]. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:867 / 888
页数:22
相关论文
共 50 条
  • [11] Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source
    Yang, Cibing
    Cao, Xinru
    Jiang, Zhaoxin
    Zheng, Sining
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 585 - 591
  • [12] Lσ-MEASURE CRITERIA FOR BOUNDEDNESS IN A QUASILINEAR PARABOLIC-PARABOLIC KELLER-SEGEL SYSTEM WITH SUPERCRITICAL SENSITIVITY
    Ding, Mengyao
    Zhao, Xiangdong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (10): : 5297 - 5315
  • [13] Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source
    Qingshan Zhang
    Yuxiang Li
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2473 - 2484
  • [14] BOUNDEDNESS IN A PARABOLIC-PARABOLIC QUASILINEAR CHEMOTAXIS SYSTEM WITH LOGISTIC SOURCE
    Wang, Liangchen
    Li, Yuhuan
    Mu, Chunlai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (02) : 789 - 802
  • [15] Local and global solutions for a subdiffusive parabolic-parabolic Keller-Segel system
    Bezerra, Mario
    Cuevas, Claudio
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [16] UNIFORM L∞ BOUNDEDNESS FOR A DEGENERATE PARABOLIC-PARABOLIC KELLER-SEGEL MODEL
    Cong, Wenting
    Liu, Jian-Guo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 307 - 338
  • [17] Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains
    Ishida, Sachiko
    Seki, Kiyotaka
    Yokota, Tomomi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) : 2993 - 3010
  • [18] Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type
    Ishida, Sachiko
    Yokota, Tomomi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1421 - 1440
  • [19] Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions
    Biler, Piotr
    Boritchev, Alexandre
    Brandolese, Lorenzo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 344 : 891 - 914
  • [20] Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source
    Liu, Ji
    Zheng, Jia-Shan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 1117 - 1136