Mathematical model and optimization of a thin-film thermoelectric generator

被引:9
|
作者
Newbrook, Daniel W. [1 ]
Huang, Ruomeng [1 ]
Richards, Stephen P. [2 ]
Sharma, Shivank [1 ]
Reid, Gillian [2 ]
Hector, Andrew L. [2 ]
de Groot, C. H. [1 ]
机构
[1] Univ Southampton, Sustainable Elect Technol Elect & Comp Sci, Univ Rd, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Sch Chem, Funct Inorgan Mat & Supramol Chem, Univ Rd, Southampton SO17 1BJ, Hants, England
来源
JOURNAL OF PHYSICS-ENERGY | 2020年 / 2卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
thin-film thermoelectric; mathematical modelling; FEM simulation; device optimization; fill factor; POWER-GENERATION; DEVICE; ELEMENTS;
D O I
10.1088/2515-7655/ab4242
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thriving of the Internet of Things is set to increase the demand for low-power wireless sensing devices. Thin-film thermoelectric generators are ideal as a sustainable power source for Internet of Things devices as they allow for low maintenance and energy autonomy. This work presents a model to estimate the performance of a thin-film thermoelectric generator. Verified by finite-element method simulation, the results from the model show that increasing the interconnect electrical conductivity and reducing the device pitch increases the power density. The power density can also be increased by increasing the fill factor and reducing the thermal conductivity of the insulating materials. Anew corrugated thin-film thermoelectric generator design is proposed in this work that allows for higher fill factors than conventional square designs where a limit on the minimum feature size is imposed, as is the case with photolithography.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Thermoelectric characteristics of microscale thin-film thermocouples
    Yabe, A
    Terakado, S
    Longtin, JP
    Hipwell, MC
    Tien, CL
    MICROSCALE THERMOPHYSICAL ENGINEERING, 1997, 1 (01): : 53 - 60
  • [32] A THERMOELECTRIC THERMOSTAT FOR A THIN-FILM PHOTOTROPIC SWITCH
    GRYADUNOV, AI
    SADYKOV, VA
    PETRENKO, RA
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1984, 27 (01) : 247 - 248
  • [33] Metallic thin-film thermocouple for thermoelectric microgenerators
    Castano, E
    Revuelto, E
    Martin, MC
    GarciaAlonso, A
    Gracia, FJ
    SENSORS AND ACTUATORS A-PHYSICAL, 1997, 60 (1-3) : 65 - 67
  • [34] Superlattice thin-film thermoelectric materials and devices
    Venkatasubramanian, R
    O'Quinn, B
    Siivola, E
    Coonley, K
    Addepally, P
    Napier, M
    Colpitts, T
    THERMOELECTRIC MATERIALS 2003-RESEARCH AND APPLICATIONS, 2004, 793 : 51 - 58
  • [35] Simulation and Design of Thin-Film Thermoelectric Generators
    Korotkov, A. S.
    Loboda, V. V.
    2018 INTERNATIONAL SYMPOSIUM ON FUNDAMENTALS OF ELECTRICAL ENGINEERING (ISFEE), 2018,
  • [36] Fabrication of flexible thin-film thermoelectric generators
    Hsiao, Chun-Ching
    Wu, Yi-Syuan
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2011, 34 (06) : 809 - 816
  • [37] Modeling of thin-film solar thermoelectric generators
    Weinstein, L. A.
    McEnaney, K.
    Chen, G.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (16)
  • [38] Thin Film Organic Thermoelectric Generator Based on Tetrathiotetracene
    Pudzs, Kaspars
    Vembris, Aivars
    Rutkis, Martins
    Woodward, Simon
    ADVANCED ELECTRONIC MATERIALS, 2017, 3 (02):
  • [39] Optimization of an On-Chip Active Cooling System Based on Thin-Film Thermoelectric Coolers
    Long, Jieyi
    Memik, Seda Ogrenci
    Grayson, Matthew
    2010 DESIGN, AUTOMATION & TEST IN EUROPE (DATE 2010), 2010, : 117 - 122
  • [40] Novel Stacking Design of a Flexible Thin-Film Thermoelectric Generator with a Metal-Insulator-Semiconductor Architecture
    Tao, Xudong
    Hao, Botao
    Assender, Hazel E.
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (12)