Universal scaling functions and quantities in percolation models

被引:20
|
作者
Hu, CK [1 ]
Chen, JA
Lin, CY
机构
[1] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[2] Natl Tsing Hua Univ, Inst Phys, Hsinchu 30043, Taiwan
关键词
percolation; universality; scaling function; finite size;
D O I
10.1016/S0378-4371(98)00570-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We briefly review recent work on universal finite-size scaling functions (UFSSFs) and quantities in percolation models. The topics under discussion include: (a) UFSSFs for the existence probability (also called crossing probability) E-p, the percolation probability P, and the probability W-n of the appearance of n percolating clusters, (b) universal slope for average number of percolating clusters, (c) UFSSFs for a q-state bond-correlated percolation model corresponding to the q-state Potts model. We also briefly mention some very recent related developments and discuss implications of our results. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [31] Universal scaling behaviour of directed percolation and the pair contact process in an external field
    Lübeck, S
    Willmann, RD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (48): : 10205 - 10217
  • [32] Static dielectric function and scaling of the ac conductivity for universal and nonuniversal percolation systems
    McLachlan, D. S.
    Sauti, G.
    Chiteme, C.
    PHYSICAL REVIEW B, 2007, 76 (01):
  • [33] Scaling relations and finite-size scaling in gravitationally correlated lattice percolation models
    Zhu, Chen-Ping
    Jia, Long-Tao
    Sun, Long-Long
    Kim, Beom Jun
    Wang, Bing-Hong
    Hu, Chin-Kun
    Stanley, H. E.
    CHINESE JOURNAL OF PHYSICS, 2020, 64 : 25 - 34
  • [34] Ellipsometric determination of universal critical adsorption scaling functions
    Carpenter, JH
    Cho, JHJ
    Law, BM
    PHYSICAL REVIEW E, 2000, 61 (01): : 532 - 541
  • [35] Multifractal formalism by enforcing the universal behavior of scaling functions
    Mukli, Peter
    Nagy, Zoltan
    Eke, Andras
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 417 : 150 - 167
  • [36] On the scaling of the chemical distance in long-range percolation models
    Biskup, M
    ANNALS OF PROBABILITY, 2004, 32 (04): : 2938 - 2977
  • [37] Consistent estimation of percolation quantities
    Meester, R
    Steif, JE
    STATISTICA NEERLANDICA, 1998, 52 (02) : 226 - 238
  • [38] A new approach to γ-scaling and the universal features of scaling functions and nucleon momentum distributions
    degli Atti, CC
    West, GB
    PHYSICS LETTERS B, 1999, 458 (04) : 447 - 453
  • [39] Finite-size scaling theory for anisotropic percolation models
    Sinha, Santanu
    Santra, S. B.
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, 2008, 82 (07): : 919 - 927
  • [40] UNIVERSAL BEHAVIOR OF AMPLITUDE RATIO OF SUSCEPTIBILITIES FOR CONTINUUM PERCOLATION MODELS
    LEE, SB
    AHN, JH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1993, 26 : S438 - S441