A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization

被引:85
|
作者
Gulcu, Saban [1 ]
Kodaz, Halife [2 ]
机构
[1] Necmettin Erbakan Univ, Dept Comp Engn, TR-42090 Meram Konya, Turkey
[2] Selcuk Univ, Dept Comp Engn, Konya, Turkey
关键词
Particle swarm optimization; Parallel algorithm; Comprehensive learning particle swarm optimizer; Global optimization; GLOBAL OPTIMIZATION; DESIGN OPTIMIZATION;
D O I
10.1016/j.engappai.2015.06.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presented a parallel metaheuristic algorithm based on the Particle Swarm Optimization (PSO) to solve global optimization problems. In recent years, many metaheuristic algorithms have been developed. The PSO is one of them is very effective to solve these problems. But PSO has some shortcomings such as premature convergence and getting stuck in local minima. To overcome these shortcomings, many variants of PSO have been proposed. The comprehensive learning particle swarm optimizer (CLPSO) is one of them. We proposed a better variation of CLPSO, called the parallel comprehensive learning particle swarm optimizer (PCLPSO) which has multiple swarms based on the master-slave paradigm and works cooperatively and concurrently. The PCLPSO algorithm was compared with nine PSO variants in the experiments. It showed a great performance over the other PSO variants in solving benchmark functions including their large scale versions. Besides, it solved extremely fast the large scale problems. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [21] Dynamic Multi-swarm Particle Swarm Optimization with Center Learning Strategy
    Zhu, Zijian
    Zhong, Tian
    Wu, Chenhan
    Xue, Bowen
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2022, PT I, 2022, : 141 - 147
  • [22] A Multi-swarm Competitive Algorithm Based on Dynamic Task Allocation Particle Swarm Optimization
    Zhang, Lingjie
    Sun, Jianbo
    Guo, Chen
    Zhang, Hui
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (12) : 8255 - 8274
  • [23] A Multi-Swarm Cooperative Perturbed Particle Swarm Optimization
    Yang, Xiangjun
    Zhao, Yilong
    Chen, Yuchuang
    Zhao, Xinchao
    ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 619 - 622
  • [24] Fully Learned Multi-swarm Particle Swarm Optimization
    Niu, Ben
    Huang, Huali
    Ye, Bin
    Tan, Lijing
    Liang, Jane Jing
    ADVANCES IN SWARM INTELLIGENCE, PT1, 2014, 8794 : 150 - 157
  • [25] Multi-swarm Particle Swarm Optimization Based on Mixed Search Behavior
    Jie, Jing
    Wang, Wanliang
    Liu, Chunsheng
    Hou, Beiping
    ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 2, 2010, : 32 - +
  • [26] Dynamic Multi-swarm Global Particle Swarm Optimization
    Tang, Yichao
    Li, Xiong
    Zhang, Yinglong
    Xia, Xuewen
    Gui, Ling
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1030 - 1037
  • [27] Multi-swarm Particle Swarm Optimization for Payment Scheduling
    Li, Xiao-Miao
    Lin, Ying
    Chen, Wei-Neng
    Zhang, Jun
    2017 SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST2017), 2017, : 284 - 291
  • [28] Dynamic multi-swarm global particle swarm optimization
    Xia, Xuewen
    Tang, Yichao
    Wei, Bo
    Zhang, Yinglong
    Gui, Ling
    Li, Xiong
    COMPUTING, 2020, 102 (07) : 1587 - 1626
  • [29] Multi-swarm particle swarm optimization based on CUDA for sparse reconstruction
    Han, Wencheng
    Li, Hao
    Gong, Maoguo
    Li, Jianzhao
    Liu, Yiting
    Wang, Zhenkun
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [30] Dynamic multi-swarm optimization based on clonal selection and particle swarm
    Wang, Qiao-Ling
    Gao, Xiao-Zhi
    Wang, Chang-Hong
    Liu, Fu-Rong
    Kongzhi yu Juece/Control and Decision, 2008, 23 (09): : 1073 - 1076